
Hardware and Software

Optimizations for GPU Resource

Management

A Thesis Submitted

in Partial Fulfillment of the Requirements

for the Degree of

Doctor of Philosophy

by

Vishwesh Jatala

to the

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

INDIAN INSTITUTE OF TECHNOLOGY KANPUR, INDIA

December, 2018

mailto:vjatala@cse.iitk.ac.in
http://www.iitk.ac.in
http://www.cse.iitk.ac.in
http://www.iitk.ac.in

ii

Scanned by CamScanner

Abstract

Graphics Processing Units (GPUs) are widely adopted across various domains

due to their massive thread level parallelism (TLP). The TLP that is present in the

GPUs is limited by the number of resident threads, which in turn depends on the

available resources in the GPUs – such as registers and scratchpad memory. Recent

GPUs aim to improve the TLP, and consequently the throughput, by increasing

the number of resources. Further, the improvements in semiconductor fabrication

enable smaller feature sizes. However, for smaller feature sizes, the leakage power

is a significant part of the total power consumption. In this thesis, we provide

hardware and software solutions that aim towards the two problems of GPU design:

improving throughput and reducing leakage energy.

In the first work of the thesis, we focus on improving the performance of GPUs

by effective resource management. In GPUs, resources (registers and scratchpad

memory) are allocated at thread block level granularity, as a result, some of the

resources may not be used up completely and hence will be wasted. We propose an

approach that shares the resources of SM to utilize the wasted resources by launching

more thread blocks in each SM. We show the effectiveness of our approach for two

resources: registers and scratchpad memory (shared memory). On evaluating our

approach experimentally with 19 kernels from several benchmark suites, we observed

that kernels that underutilize register resource show an average improvement of 11%

with register sharing. Similarly, the kernels that underutilize scratchpad resource

show an average improvement of 12.5% with scratchpad sharing.

For scratchpad sharing, we observe that the performance is limited by the avail-

ability of the part of scratchpad memory that is shared among thread blocks. To

address this, we propose compiler optimizations to improve the availability of shared

scratchpad memory. We describe an allocation scheme that helps in allocating

scratchpad variables such that shared scratchpad is accessed for short duration. We

introduce a new hardware instruction, relssp, that when executed releases the shared

scratchpad memory. Finally, we describe an analysis for optimal placement of relssp

instructions, such that shared scratchpad memory is released as early as possible,

but only after its last use, along every execution path. We evaluated the proposed

compiler optimizations on 19 kernels from various benchmarks suites. We observe

that the kernels that under-utilize scratchpad memory show an average improvement

of 19% when compared to the baseline approach, without affecting the performance

of the kernels that are not limited by scratchpad memory.

In the second work of the thesis, we focus on reducing the leakage power of the

register file. Recent trends in the GPU increase the number of on-chip registers

to increase the TLP. However, with the increase the register file size, the leakage

power increases. Also, with the technology advances, the leakage power component

has increased and has become an important consideration for the manufacturing

process. The leakage power of a register file can be reduced by turning infrequently

used registers into low power (drowsy or off) state after accessing them. A major

challenge in doing so is the lack of runtime register access information. To address

this, we propose a system called GReEneR. It employs a compiler analysis that

determines the power status of the registers, i.e., which registers can be switched

off or placed in drowsy state at each program point and encodes this information

in program instructions. Further, it uses a runtime optimization that increases the

accuracy of power status of registers. We implemented the proposed ideas using

GPGPU-Sim simulator and evaluated them 21 kernels from several benchmarks

suites. We observe that GReEneR shows an average reduction of register leakage

energy by 46.96% when compared to baseline approach with a negligible number of

simulation cycles overhead (0.53%).

Acknowledgements

This work would not have been made possible without the help of many people.

First and foremost, I would like to express my sincere gratitude to my supervisor

Prof. Amey Karkare for his continuous support and guidance. He is a great mentor

and teacher; he not only supported me academically but also personally throughput

my Ph.D. program. He always understands the student’s capabilities and focuses

his vision towards the student’s career, and I am very fortunate to have supervised

by him. He is always open to any kind of discussion – starting from formulating

the ideas, implementing the concepts, analyzing results, and reviewing manuscripts.

His constructive feedback at every stage of my thesis helped me in improving the

quality of research. Thanks to him for always allocating me time, even during his

busy schedule, whenever I required his guidance. I am also grateful to him for all

his administrative support and recommendations. Under his guidance, I not only

developed research skills but also learned several transferable skills that make me

handle difficult problems in life.

I also would like to thank Late. Prof. Sanjeev K. Aggarwal, who jointly super-

vised me during the initial stages of my research work. He introduced me to the

world of Graphics Processing Unit (GPU) architectures and compilers for GPUs. I

am greatly inspired by his administrative and abstract thinking skills.

I am grateful to Dr. Jayvant Anatpur at Mentor Graphics India Pvt. Ltd. I

have been collaborating with him during the entire period of my research. Many

thanks to my advisor for introducing him to me during the beginning stages of the

research work. His vast experience in the areas of GPU architecture has helped to

shape my research work in a good direction. He is a wonderful mentor and always

approachable. I had a very fruitful discussion with him on every part of the thesis.

I would like to thank the department of computer science at IIT Kanpur for

providing all the resources and facilities to conduct research. Also, I want to thank

all the faculty members in my department for teaching me various courses. Spe-

cial thanks to Research-I Foundation for providing additional scholarship and travel

grants during the first few years of my research. I am grateful to my institute for

giving me a platform to pursue my research career and providing a beautiful envi-

ronment. Several inspiring sessions and cultural events conducted by the institute

kept refreshing my life during my stay at IIT Kanpur.

I have been financially supported by Tata Consultancy Services (TCS) through

TCS Research Scholarship program since 2014. I am deeply grateful to TCS for

providing me a regular monthly fellowship, contingency grant, and travel assistance

to attend the conferences held at various national and international venues.

Many thanks to all my friends who made my life enjoyable at IIT Kanpur. Espe-

cially, I would like to thank all the M.Tech 2011 friends for giving me a memorable

experience during the first two years of my Ph.D. Also, I would like to thank all

my lab mates, Ph.D. colleagues, and seniors for their discussions on a wide range of

technical and non-technical topics that helped me in improving my social skills.

I am grateful to all my family members for their unconditional love and support

throughout my life. Special thanks to my wife, Nagajyothi, for her co-operation

throughout my research. My biggest strengths are their moral support and encour-

agement, which made me cross all the hard stages of my life. Without their support,

it would have been very difficult to achieve this.

Finally, I thank god for blessing me and giving me inner strength to make my

path up to this stage.

Vishwesh Jatala

Dedicated To

My Family Members and Teachers

x

Contents

Abstract iv

Acknowledgement vii

List of Tables xiv

List of Figures xvi

List of Abbreviations xxi

1 Introduction 1

1.1 Problem Description . 2

1.2 Thesis Contributions . 3

1.2.1 Resource Sharing . 3

1.2.2 Compiler Optimizations for Scratchpad Sharing 4

1.2.3 Reducing Leakage Energy of Register File 5

1.3 Overview of GPU Architecture . 5

1.3.1 GPU Architecture and Programming Model 6

1.3.2 Power Model . 7

1.4 Thesis Organization . 7

2 Improving GPU Performance Through Resource Sharing 9

2.1 Introduction . 9

2.1.1 Resource Underutilization in GPUs 10

2.1.2 Our Solution: Resource Sharing 12

2.2 Resource Sharing . 13

xii CONTENTS

2.2.1 Register Sharing . 15

2.2.2 Scratchpad Sharing . 17

2.2.3 Can Resource Sharing Cause a Deadlock? 19

2.2.4 Computing the Number of Effective Thread Blocks 20

2.3 Optimizations . 22

2.3.1 Scheduling Owner Warp First (OWF) 23

2.3.2 Unrolling and Reordering of Register Declarations 24

2.3.3 Dynamic Warp Execution . 25

2.4 Hardware Requirement . 26

2.4.1 Storage Units Required for Register Sharing 27

2.4.2 Storage Units Required for Scratchpad Sharing 28

2.5 Experiments and Analysis . 29

2.5.1 Analyzing Benchmarks that are Applicable to Resource Sharing 31

2.5.2 Analyzing Benchmarks that are not Applicable to Resource

Sharing . 43

2.6 Summary . 45

3 Improving Scratchpad Sharing with Compiler Optimizations 47

3.1 Introduction . 47

3.1.1 The Need for Compiler Optimizations 48

3.1.2 Contributions . 50

3.2 Compiler Optimizations . 50

3.2.1 Minimizing Shared Scratchpad Region 51

3.2.2 Implementation of relssp Instruction 55

3.2.3 Algorithm for Optimal Placement of relssp Instruction 57

3.3 Analysis of Compiler Optimizations 61

3.4 Experimental Evaluation . 62

3.4.1 Analyzing Benchmarks that are Limited by Scratchpad Memory 64

3.4.2 Analyzing Benchmarks that are not Limited by Scratchpad

Memory . 77

3.5 Summary . 78

CONTENTS xiii

4 Optimizations for Reducing Register File Leakage Energy 79

4.1 Introduction . 79

4.1.1 Opportunities to Reduce Register Leakage Energy 80

4.1.2 Our Solution: GReEneR . 82

4.2 GReEneR . 83

4.2.1 Compiler Analysis . 84

4.2.2 Encoding Power States . 85

4.2.3 Run-time Optimization . 89

4.2.4 Hardware Support . 90

4.3 Experimental Analysis . 92

4.3.1 Comparing Register Leakage Power 94

4.3.2 Performance Overhead Using Simulation Cycles 95

4.3.3 Comparing Register Leakage Energy 97

4.3.4 Effectiveness of Optimizations 98

4.3.5 Analyzing Hardware Overheads 98

4.3.6 Effect of Wake up Latency . 100

4.3.7 Leakage Energy Savings with Routing 102

4.3.8 Leakage Energy Savings with Different Schedulers 104

4.3.9 Leakage Energy with Various Technologies 105

4.3.10 Comparing Leakage Energy for Various Threshold Distances . 105

4.4 Summary . 107

5 Related Work 109

5.1 Improving GPU Performance . 109

5.2 Improving Energy Efficiency . 113

6 Conclusions and Future Work 117

6.1 Future Directions . 118

6.1.1 Short-term Research Directions 118

6.1.2 Long-term Research Directions 119

References 121

Index 135

xiv CONTENTS

Publications 135

List of Tables

2.1 Set-1: Benchmarks Limited by Registers 10

2.2 Set-2: Benchmarks Limited by Scratchpad Memory 10

2.3 GPGPU-Sim Architecture . 11

2.4 Set-3: Benchmarks Limited by Threads or Blocks 29

2.5 Effect on IPC with Register Sharing 41

2.6 Effect on Resident Thread Blocks with Register Sharing 41

2.7 Effect on IPC with Scratchpad Sharing 42

2.8 Effect on Resident Thread Blocks with Scratchpad Sharing 42

3.1 Access Ranges for Scratchpad Variables and Sets. 55

3.2 GPGPU-Sim Architecture . 62

3.3 Benchmark Applications for which the Number of Thread Blocks is

Limited by Scratchpad Memory . 63

3.4 Set-3 Benchmarks: The Number of Thread Blocks is Not Limited by

Scratchpad Memory . 63

3.5 Comparing the Number of Simulated Instructions 68

3.6 Other GPGPU-Sim Configurations 73

3.7 Additional Benchmarks that are Limited by Scratchpad Memory . . . 73

3.8 Benchmarks Used for Comparison with Shared Memory Multiplex-

ing [96] . 75

4.1 Computing Power State of a Register R at a Program Point π 86

4.2 GPGPU-Sim Configuration . 92

4.3 Benchmarks Used for Evaluation . 93

4.4 Hardware Overheads for Sleep Transistor Circuitry 99

xvi LIST OF TABLES

4.5 Comparing Register Leakage Energy by Varying Threshold Distance . 106

List of Figures

2.1 (a) Number of Resident Thread Blocks with Limited Registers (b)

Underutilization of Registers . 11

2.2 (a) Number of Resident Thread Blocks with Limited Scratchpad Mem-

ory (b) Underutilization of Scratchpad Memory 12

2.3 Approaches to Resource Allocation 14

2.4 Resource Allocation with Register Sharing 15

2.5 Register Access Mechanism . 16

2.6 Resource Allocation with Scratchpad Sharing 17

2.7 Scratchpad Access Mechanism . 18

2.8 Deadlock in the Presence of Barrier Instructions 19

2.9 Warp Scheduling . 22

2.10 Unrolling and Reordering of Register Declarations 25

2.11 Modified Architecture for Resource Sharing 27

2.12 Comparing Number of Resident Thread Blocks of Baseline Approach

with (a) Register Sharing (b) Scratchpad Sharing 31

2.13 Performance Comparison of (a) Register Sharing (b) Scratchpad Shar-

ing with Baseline Approach . 32

2.14 Percentage Decrease in Simulation Cycles (a) Register Sharing (b)

Scratchpad Sharing . 33

2.15 Performance Analysis of Optimizations for (a) Register Sharing (b)

Scratchpad Sharing . 34

2.16 Performance Comparison of (a) Register Sharing (b) Scratchpad Shar-

ing with GTO (Baseline) Scheduler 36

xviii LIST OF FIGURES

2.17 Performance Comparison of (a) Register Sharing (b) Scratchpad Shar-

ing with Two-Level (Baseline) Scheduler 37

2.18 Percentage Decrease in Stalls and Idle Cycles for (a) Register Sharing

(b) Scratchpad Sharing . 38

2.19 Effectivenss of the Additional Thread Blocks with (a) Register Shar-

ing (b) Scratchpad Sharing . 39

2.20 Comparison with LRR that Uses Twice the Number of (a) Registers

(b) Scratchpad . 40

2.21 Performance comparison of (a) Register Sharing (b) Scratchpad Shar-

ing with Warp-Level Divergence [92]. 43

2.22 Performance Analysis of Set-3 Applications for (a) Register Sharing

(b) Scratchpad Sharing . 44

3.1 Release of Shared Scratchpad . 48

3.2 Access Ranges of Scratchpad Variables 49

3.3 Access Ranges of Variables . 53

3.4 Pseudocode of relssp Instruction . 56

3.5 Hardware Implementation of relssp Instruction 57

3.6 Possible Insertion Points for relssp . 59

3.7 Scenarios for Optimal Insertion of relssp 60

3.8 Comparing the Resident Thread Blocks 65

3.9 Comparing the IPC . 67

3.10 Performance Analysis of Optimizations 69

3.11 Comparing the Simulation Cycles . 69

3.12 Progress of Shared Thread Blocks . 70

3.13 Improvement in IPC for Shared-OWF-OPT w.r.t. Baseline Having

(a) GTO, (b) Two-Level Scheduler 71

3.14 Comparison with Unshared-LRR that Uses Twice the Scratchpad

Memory . 72

3.15 Performance Analysis for Various Configurations 74

3.16 Performance Comparison with Other Approaches (Lower Value is

Better) . 76

3.17 IPC Comparison of Set-3 Benchmarks 77

LIST OF FIGURES xix

4.1 Register Access Pattern for MUM [14] 80

4.2 Percentage of Simulation Cycles Spent by a Register (Averaged Over

all the Registers) . 81

4.3 A Snippet of the Program and its CFG for SP Benchmark [2] 87

4.4 Example for Run-time Optimization 88

4.5 Modifications to GPU Pipeline . 90

4.6 Comparing Register Leakage Power 94

4.7 Comparing Performance in terms of Simulation Cycles 95

4.8 Comparing Register Leakage Energy 96

4.9 Comparing Effectiveness of Individual Optimizations 97

4.10 Comparing Performance Overhead for Various Wake Up Latencies . . 100

4.11 Comparing the Leakage Energy for Various Wake Up Latencies 101

4.12 Comparing Leakage Energy by Including Routing Energy 102

4.13 Comparing Leakage Energy with GTO Scheduler 103

4.14 Comparing Leakage Energy with Two-Level Scheduler 103

4.15 Comparing the Leakage Energy for Different Technology Configurations104

xx LIST OF FIGURES

List of Abbreviations

ALU Arithmetic Logic Unit

CACTI Cache Access and Cycle Time Model

CFG Control Flow Graph

CMOS Complementary Metal-Oxide-Semiconductor

CTA Co-operative Thread Array

CUDA Compute Unified Device Architecture

DRAM Dynamic Random-Access Memory

DVFS Dynamic Voltage Frequency Scaling

FCFS First-Come-First-Served

FR-FCFS First-Ready, First-Come-First-Served

GPGPU General-Purpose Graphics Processing Unit

GPU Graphics Processing Unit

GREENER GPU REgister file ENErgy Reducer

GTO Greedy Then Old

IPC Instructions Per Cycle

ITRS International Technology Roadmap for Semiconductors

LRR Loose Round Robin

McPAT Multicore Power, Area, and Timing

OpenCL Open Computing Language

OpenGL Open Graphics Library

OWF Owner Warp First

PTX Parallel Thread Execution

SFU Special Function Unit

SIMD Single Instruction Multiple Data

SM Streaming Multiprocessors

xxii Abbreviations

SP Stream Processor

SRAM Static Random-Access Memory

TLP Thread Level Parallelism

Chapter 1

Introduction

For many decades, the processor vendors kept increasing the performance of the

single-core processor by increasing the core clock frequency and exploiting instruction-

level-parallelism in every generation [13]. Moreover, with the advent of Moore’s

law [73], the density of transistors on a chip increased, as a result, computer archi-

tects leveraged the additional transistors to improve the performance further. How-

ever, by the mid-to late-1990s, these techniques became less effective due to power

constraints and heat dissipation [45]. Consequently, the chip designers shifted their

designs towards having multiple processors on a single chip rather than having a

single-core processor. This has started the development of chip multiprocessors and

accelerators such as Graphics Processing Units (GPUs).

The initial development of the GPUs was driven by the graphics applications

to render the graphics quickly on a screen [76]. The graphics applications typically

require performing the same operation on a large number of pixels at the same

time. To meet this requirement, the architecture of the GPU is designed differently

compared to that of a traditional CPU. GPUs expose more parallelism and achieve

high throughput by adopting single instruction and multiple threaded (SIMT) ex-

ecution model, in which several threads execute the same instruction at the same

time in parallel. During the early stages, GPUs were less programmable. Later,

they have become more featured and programming interfaces, such as OpenGL [77],

were developed to program graphics applications on GPUs.

In the early days, GPUs were targeted towards graphics applications only. With

several architectural innovations, they are now being used for general purpose appli-

2 Introduction

cations. Programming languages such as CUDA [1] and OpenCL [5] were developed

to write programs for general purpose computation on GPUs. Several data parallel

applications are leveraging GPUs by processing a huge amount of data to improve

performance [33, 41, 66].

One of the key factor to achieve high throughput in the GPU is the ability to

hide the long latencies by using thread-level-parallelism (TLP). In the past decade,

several studies [46, 90, 92, 96] focus on improving the throughput of GPUs by

exploiting the TLP. They propose static and run-time techniques to improve the

performance of GPUs by managing the GPU resources effectively.

1.1 Problem Description

The amount of TLP utilized by a GPU depends on the number of resident threads,

and hence the number of resident thread blocks, in each of its streaming multipro-

cessor (SM). However, the number of thread blocks that can be launched on an SM

depends on the resource usage of the thread blocks–e.g. the number of registers, the

amount of shared memory. Since the allocation of threads to an SM is at the thread

block granularity, some of the resources may not be used up completely and hence

remain underutilized. Theoretically, resources can get underutilized from [0, 50%)

when the applications are limited by the resource. On evaluating experimentally

for several benchmark applications, we observed that resource allocation at thread

block level granularity shows up to ∼25% resource underutilization (details are dis-

cussed in Chapter 2). Moreover, when the applications are limited by the resources,

the number of resident thread blocks get limited, as a result, the TLP in the SM

also gets limited.

To keep improving the TLP, and consequently the throughput, GPU architects

increase the maximum number of resident threads and the on-chip resources such

as register file in every generation. For instance, NVIDIA Fermi GF100, which was

released in 2010, has 128KB register file and allows up to 1536 resident threads.

While the next generation NVIDIA Kepler GK110, released in 2012, has 256KB

register file and allows maximum 2048 resident threads [4].

However, with the increase in the number of on-chip resources and with the

increase in technology, the leakage power dissipation has become a serious concern

1.2 Thesis Contributions 3

for GPU manufacturing process. Kim et al. [50] discussed the growing importance of

leakage power dissipation with the decrease in the feature size of the semiconductor

devices. Also, Lim et al. [65] has observed that the leakage power dissipated by

the GPUs is more than 50% of the total power for several workloads. Moreover,

earlier studies [59, 67] show that register files in GPUs consume around 15% of the

total power. Also, we observed that the registers that are allocated to a thread are

accessed for a very short duration (on an average < 2% of the total simulation cycles

of its warp) during the entire life time of its warp (details are described in Chapter 4),

but they continue to dissipate leakage power throughout the entire execution of its

warp.

To summarize, improving GPU throughput and reducing leakage energy have

become the two crucial factors of GPU design. In this thesis, we address these prob-

lems by managing the GPU resources (registers and scratchpad memory) effectively.

To improve GPU performance, we propose hardware and software solutions that in-

crease the TLP by utilizing the wasted on-chip registers and scratchpad memory

present in the SMs. To minimize the leakage energy of register file, we propose

hardware and software solutions by taking into account register access patterns.

1.2 Thesis Contributions

In the first part of the thesis, we focus on improving the GPU performance. We

propose an approach called Resource Sharing that exploits underutilized registers

and scratchpad memory of the GPU to improve the throughput. To improve the

performance further, we propose compiler optimizations that improve the availability

of scratchpad memory that is present with resource sharing approach. In the second

part, we propose a system called GReEneR that employs static and run-time

techniques to reduce the leakage energy register file by turning the registers into low

power states.

1.2.1 Resource Sharing

To improve the TLP and the resource utilization, we propose Resource Sharing that

launches additional thread blocks in each SM. These thread blocks use the unutilized

4 Introduction

resources and also share the resources with other resident blocks. The additional

thread blocks help in improving the throughput by hiding long execution latency

cycles. We evaluated the effectiveness of the resource sharing for two resources,

i.e., registers and scratchpad memory. We further propose three optimizations,

viz., Owner Warp First (OWF), Unrolling and Reordering of Register Declaration

and Dynamic Warp Execution that help in managing the additional thread blocks

effectively.

We implemented resource sharing in GPGPU-Sim simulator [3] and experimen-

tally validated it on 19 applications from 4 different benchmark suites: GPGPU-

Sim [14], Rodinia [19], CUDA-SDK [2], and Parboil [7]. We observed that applica-

tions that underutilize register resource show a maximum improvement of 24% and

an average improvement of 11% with register sharing. Similarly, the applications

that underutilize scratchpad resource show a maximum improvement of 30% and

an average improvement of 12.5% with scratchpad sharing. The remaining appli-

cations, whose number of resident thread blocks are not limited by any resources,

perform similar to the baseline approach.

1.2.2 Compiler Optimizations for Scratchpad Sharing

In GPUs, resources allocated to a thread block are released only after all the threads

of a thread block finish their execution even though the resources are not accessed

till the end of program execution. This mechanism affects of availability of shared

scratchpad memory that is associated with scratchpad sharing since scratchpad

memory may not accessed until the program execution. Thus, it can reduce the

amount of TLP with the scratchpad sharing approach.

To improve the availability of shared scratchpad memory, we propose compiler

optimizations. We describe an allocation scheme that helps in allocating scratchpad

variables such that shared scratchpad is accessed for short duration. We introduce a

new hardware instruction, relssp, that when executed, releases the shared scratchpad

memory. Finally, we describe an analysis for optimal placement of relssp instructions

such that shared scratchpad memory is released as early as possible, but only after

its last use, along every execution path.

We integrated the relssp instruction in the GPGPU-Sim simulator, and imple-

1.3 Overview of GPU Architecture 5

mented the compiler optimizations in Ocelot [21] framework. We evaluated the

effectiveness of our approach on 19 kernels from 3 benchmarks suites: CUDA-SDK,

GPGPU-Sim, and Rodinia. We observe that the kernels that under-utilize scratch-

pad memory show an average improvement of 19% and maximum improvement of

92.17% with scratchpad sharing including compiler optimizations when compared

to the baseline approach.

1.2.3 Reducing Leakage Energy of Register File

The leakage energy of a register file can be minimized by turning the register into low

power states [8]. However, having the precise knowledge of register access pattern

will make it more efficient.

In this thesis, we propose a system, GReEneR, to reduce the leakage energy of

GPU register file. It uses a compile-time analysis to determine the power state of

the registers (OFF, SLEEP, or ON) after each instruction by estimating the register

usage information. GReEneR transforms an input assembly language by encoding

the power state information at each instruction to make it energy efficient. The static

analysis makes safe approximations while computing power state of the registers,

therefore, the choice of the state can be suboptimal at run-time. Hence, to improve

the accuracy and energy efficiency, GReEneR provides a run-time optimization

that dynamically corrects the power state of registers of each instruction.

We implemented GReEneR using GPGPU-Sim simulator. We integrated

GPUWattch [59] with CACTI-P [63] version to enable power saving mechanism.

We evaluated our implementation on wide range of kernels from different benchmark

suites: CUDA-SDK, GPGPU-Sim, Parboil, and Rodinia. We observe a reduction in

the register leakage energy by an average of 46.96% and maximum of 57.57% with

a negligible number of simulation cycles overhead.

1.3 Overview of GPU Architecture

Our proposed ideas involve implementing hardware and software strategies to im-

prove GPU performance and energy efficiency. This section briefs the required

background on GPU architecture, programming models, and power models.

6 Introduction

1.3.1 GPU Architecture and Programming Model

A typical NVIDIA GPU [1] consists of a set of Streaming Multiprocessors (SMs).

Each multiprocessor contains a large number of execution units such as Arithmetic

Logic Units (ALUs), Special Function Units (SFUs), and Load/Store units. GPUs

achieve high throughput because they can hide long memory execution latencies with

massive thread level parallelism. Each SM in a GPU maintains on-chip resources

such as register file and scratchpad memory. The register file allows the resident

threads to maintain their contexts, and hence can have faster context switching.

To reduce the access latency, the register file is divided into multiple banks. The

registers from different banks can be accessed in parallel. A bank conflict occurs

whenever multiple registers need to be accessed from the same bank, and these

registers need to be accessed in serial.

A programmer can parallelize an application on GPU by using programming

languages such as CUDA [1] and OpenCL [5]. The region of a program which is to be

parallelized is specified using a function called kernel. A program written in CUDA

can be compiled using nvcc compiler. The compiler translates the program into

PTX, which is a pseudo-assembly instruction set supported by NVIDIA. PTX does

not include the optimizations, such as register allocation and strength reduction,

also it is not executed on the real hardware. However, NVIDIA executes SASS

instruction set, which is assembled by ptxas from PTX code. NVIDIA provides

a tool, cuobjdump, to disassemble the executable into SASS assembly language.

GPGPU-Sim simulator [3] does not simulate SASS directly but simulates PTXPlus,

which is a one to one mapping of SASS and has similar syntax as that of PTX.

A kernel written in CUDA is invoked with the configuration specifying the num-

ber of thread blocks and number of threads in a thread block as

<<<#ThreadBlocks, #Threads>>>. The number of thread blocks that can re-

side on an SM depends on: (a) the number of registers used by a thread block and

the number of registers available in the SM, (b) the amount of scratchpad memory

used by a thread block and the amount of scratchpad memory available in the SM,

(c) the maximum number of threads allowed per SM, and (d) the maximum number

of thread blocks allowed per SM.

The thread blocks that are launched in the GPUs are executed independently [1].

1.4 Thesis Organization 7

This allows the thread blocks to be scheduled in any order on to the SMs. The

threads that are launched the SM are further divided into a set of consecutive 32

threads called Warp. Each SM contains one or more warp schedulers which schedule

a ready warp every cycle from a pool of ready warps. All threads in a warp execute

the same instruction. Warp schedulers schedule instructions in-order and so, when

the current instruction of a warp can not be issued, the warp is not considered to

be ready. If no warp can be scheduled in a cycle, then that is a stall cycle. As the

number of stall cycles increases, the run time goes up and the throughput decreases.

The resource sharing approach proposed in this thesis (discussed in Chapter 2) aims

to improve the GPU performance by increasing the number of resident thread blocks,

which help in hiding long latency cycles.

1.3.2 Power Model

GPUWattch [59] framework uses the simulation statistics of GPGPU-Sim to measure

the power of each component in the GPUs. The framework is built on McPAT [62],

which internally uses CACTI [18]. McPAT models the register files as memory

arrays to measure the register power. CACTI divides memory arrays into set of

banks, which are finally divided into subarrays (collection of memory cells).

Our proposed system GReEneR (discussed in Chapter 4) optimizes the PTX-

Plus code to make it energy efficient by reducing the leakage power of the register

files. In the experiments, we use GPUWattch to measure the leakage power.

1.4 Thesis Organization

The rest of the thesis is organized as follows. The details of resource sharing ap-

proach is discussed Chapter 2. The compiler optimizations to improve the scratch-

pad sharing is described in Chapter 3. Chapter 4 presents the system GReEneR

to reduce the leakage of register file. Chapter 5 discusses the related work. Chap-

ter 6 concludes the thesis and discusses future research directions to improve the

performance and energy efficiency of GPUs.

8 Introduction

Chapter 2

Improving GPU Performance

Through Resource Sharing

2.1 Introduction

General-Purpose Graphics Processing Unit (GPGPU) applications exploit on-chip

resources like registers and scratchpad memory available in GPUs to improve their

performance. The throughput achieved by a GPU depends on the amount of thread

level parallelism (TLP) utilized by it. However, the TLP that is present in the

GPU is limited by the number of resident threads, which in turn depends on the

availability of resources in its streaming multiprocessor. A programmer interested

in parallelizing an application in GPU invokes a function, called kernel, with a

configuration consisting of the number of thread blocks and the number of threads in

each thread block. The maximum number of thread blocks, and hence the number

of threads, that can be launched in an SM depends on the number of available

resources (such as registers and scratchpad memory) in it. For instance, if an SM

has R resources and each thread block requires Rtb resources, then bR/Rtbc number

of thread blocks can be launched in each SM. Thus utilizing Rtb ∗ bR/Rtbc units of

resources present in the SM; the remaining R mod Rtb resources are wasted.

10 Improving GPU Performance Through Resource Sharing

Table 2.1: Set-1: Benchmarks Limited by Registers

Benchmark Application Kernel Block Size Registers per Thread
Rodinia [19] backprop bpnn adjust 256 24

weights cuda
Rodinia b+tree findRangeK 508 24
Rodinia hotspot calculate temp 256 36
GPGPU-Sim [14] LIB Pathcalc Portfo 192 36

lio KernelGPU
GPGPU-Sim MUM mummergpuKernel 256 28
Parboil [7] mri-q ComputeQ GPU 256 24
Parboil sgemm mysgemmNT 128 48
Parboil stencil block2D hybrid 512 28

coarsen x

Table 2.2: Set-2: Benchmarks Limited by Scratchpad Memory

Benchmark Application Kernel Block Size Scratchpad Size
(in bytes)

CUDA-SDK [2] convolutionSep- convolution 64 2560
arable (CONV1) RowsKernel

CUDA-SDK convolutionSep- convolution 128 5184
arable (CONV2) ColumnsKernel

Rodinia lavaMD kernel gpu cuda 128 7200
Rodinia nw (NW1) needle cuda 16 2180

shared 1
Rodinia nw (NW2) needle cuda 16 2180

shared 2
Rodinia srad v2 (SRAD1) srad cuda 1 256 6144
Rodinia srad v2 (SRAD2) srad cuda 2 256 5120

2.1.1 Resource Underutilization in GPUs

To quantify the amount of resource underutilization, we analyzed several benchmark

applications using the GPGPU-Sim [3] simulator. The GPU configuration used

for the experiments is shown in Table 2.3. The benchmark details are given in

Table 2.1 and Table 2.2. For applications that are limited by register resource, we

show the number of resident thread blocks per SM in Figure 2.1(a), and we show

the percentage of registers that are unutilized per SM in Figure 2.1(b).

Example 2.1.1. Consider the application hotspot. Each thread for this benchmark

needs 36 registers, and there are 256 threads in each block, so the number of reg-

isters required per thread block is 9216 (36 * 256). According to the configuration

2.1 Introduction 11

Table 2.3: GPGPU-Sim Architecture

Resource GPU Configuration
Number of SMs 14
Max Num of TBs per SM 8
Max Num of Threads per SM 1536
Number of Registers (32 bit) per SM 32768
Scratchpad Memory per SM 48KB for register sharing

16KB for scratchpad sharing
Warp Scheduling LRR
L1-Cache per SM 16KB
DRAM Scheduler FR-FCFS
GDDR3 Timings tRRD = 6, tWR = 12, tRCD = 12, tRAS = 28,

tRP = 12, tRC = 40, tCDLR = 5, tCL = 12

(a)

 0
 1
 2
 3
 4
 5
 6
 7
 8

backprop

b+tree
hotspot

LIB MUM
mri-q

sgemm

stencil

N
u
m

b
e
r

o
f
T

h
re

a
d
 B

lo
c
k
s Number of Resident Thread Blocks

(b)

 0

 5

 10

 15

 20

 25

 30

backprop

b+tree
hotspot

LIB MUM
mri-q

sgemm

stencil

R
e

g
is

te
r

W
a
s
ta

g
e
(%

g
e
)

Register Underutilization

Figure 2.1: (a) Number of Resident Thread Blocks with Limited Registers (b) Un-
derutilization of Registers

(Table 2.3), the number of registers available on an SM is 32768, so an SM can fit

only 3 threads blocks (
⌊
32768
9216

⌋
). This results in wastage of 5120 registers per SM.

Similarly, in Figure 2.2(a) we show the number of resident thread blocks per SM

for the applications that are limited by scratchpad resource, and in Figure 2.2(b)

we show the percentage of scratchpad memory that remains unutilized per SM.

Example 2.1.2. Consider the application lavaMD. Each thread block for this bench-

mark needs 7200 bytes of scratchpad memory. According to the configuration in Ta-

ble 2.3, the amount of scratchpad memory available per SM is 16384 bytes, hence

12 Improving GPU Performance Through Resource Sharing

(a)

 0

 1

 2

 3

 4

 5

 6

 7

 8

CO
NV1

CO
NV2

lavaM
D

NW
1
NW

2
SRAD1

SRAD2

N
u
m

b
e
r

o
f
T

h
re

a
d
 B

lo
c
k
s

Number of Resident Thread Blocks

(b)

 0

 5

 10

 15

 20

 25

 30

CONV1

CONV2

lavaMD

NW1
NW2

SRAD1

SRAD2

S
c
ra

tc
h
p
a
d
 W

a
s
ta

g
e
(%

g
e
) Scratchpad Underutilization

Figure 2.2: (a) Number of Resident Thread Blocks with Limited Scratchpad Memory
(b) Underutilization of Scratchpad Memory

an SM can fit 2 thread blocks. This results in 1984 bytes of scratchpad memory per

SM remaining unutilized. Similar behavior is observed for other applications as well.

To summarize, applications that are constrained by their resource requirements

may not only have low residency, but also waste resources of GPU.

2.1.2 Our Solution: Resource Sharing

To improve the resource utilization and thread-level-parallelism, we propose a mech-

anism, Resource Sharing, to share resources of SM and launch more thread blocks,

effectively reducing resource wastage. In particular, we show how sharing of registers

and sharing of scratchpad improves the throughput of SMs. It is observed [46] that

increasing the number of threads benefits compute-bound applications, but may

result in increased L1/L2 cache misses for memory-bound applications, thereby de-

creasing their performance. To overcome this, we propose an optimization, called

Owner Warp First (OWF) that schedules the extra thread blocks and their con-

stituent warps effectively. For the register sharing approach, we further propose two

optimizations, viz., Unrolling and Reordering of Register Declaration and Dynamic

Warp Execution that improves register utilization and minimizes the number of stall

cycles observed by the additional thread blocks respectively.

To summarize, this chapter describes the following contributions of the thesis.

2.2 Resource Sharing 13

1. To utilize the resources of GPUs effectively, we propose a novel resource sharing

mechanism that enables launching of more thread blocks per SM.

2. We implemented our approach for two resources, i.e., registers and scratchpad.

We propose optimizations to further improve the throughput of applications.

3. We implemented our approach using GPGPU-Sim and evaluated on 19 appli-

cations from GPGPU-Sim [14], Rodinia [19], CUDA-SDK [2], and Parboil [7]

benchmarks. We observe that 8 of the applications, which underutilize the

register resource, show an average improvement of 11% with register sharing

approach. Similarly 7 applications, which underutilize the scratchpad resource,

show an average improvement of 12.5% with scratchpad sharing. While the

remaining 4 applications perform comparable to the baseline approach.

In the rest of the chapter, Sections 2.2 and 3.4.1.4 present the details of resource

sharing and optimizations respectively. Section 2.4 discusses hardware overhead for

implementing resource sharing. Section 2.5 describes the experimental evaluation,

and Section 2.6 summarizes the chapter.

2.2 Resource Sharing

The following example illustrates how we can increase the number of thread blocks

in an SM by allowing two thread blocks to share resources.

Example 2.2.1. Consider an application that has thread blocks of size 10 warps (320

threads), and a thread block requires 10K resource units to complete its execution. If

an SM has 35K resource units, at most 3 thread blocks can be resident on each SM

by utilizing 30K resource units; the remaining 5K units are wasted. The schematic

of this approach (baseline) is shown in Figure 2.3(a), where thread blocks TB0,TB1,

and TB2 are scheduled on an SM.

In order to reduce the wastage of resources, our approach allocates one more

thread block (TB3) in sharing mode with TB2 Figure 2.3(b). Instead of allocating

10K resource units separately to each of the thread blocks TB2 and TB3, a total

of 15K units for the two blocks are allocated as follows: each of TB2 and TB3 is

allocated 5K units exclusively (Private or Unshared Resource), while the remaining

14 Improving GPU Performance Through Resource Sharing

Number of Resource Units in SM = 35K

w0

w1

...
w9

TB0

(10K Units)

Unshared

w10

w11

...
w19

TB1

(10K Units)

Unshared

w20

w21

...
w29

TB2

(10K Units)

Unshared

(a) Default Approach

Number of Resource Units in SM = 35K

w0

w1

...
w9

TB0

(10K Units)

Unshared

w10

w11

...
w19

TB1

(10K Units)

Unshared

w20

w21

...
w29

TB2

w30

w31

...
w39

TB3

Shared

(15K Units)

(b) Resource Sharing

Figure 2.3: Approaches to Resource Allocation

2.2 Resource Sharing 15

Number of Registers (Reg) in SM = 35K

w0

w1

...
w9

TB0

(10K Reg)

Unshared

w10

w11

...
w19

TB1

(10K Reg)

Unshared

w20

w21

...
w29

TB2

w30

w31

...
w39

TB3

Shared

(15K Reg)

Figure 2.4: Resource Allocation with Register Sharing

5K units (Shared Resource) are all allocated to TB2 or TB3 whoever needs any one

of these resources first. The other thread block (which did not get the ownership of

shared resources), when it needs any of the shared resources, waits till the owner

block finishes.

We refer to any two thread blocks as Shared Blocks when they share resources

exclusively (for example TB2 and TB3 in Figure 2.3(b)), and the warps of such

thread blocks as Shared Warps. Thread blocks (warps) that do not participate in

sharing are referred to as Unshared Blocks (Unshared Warps). We describe in detail

our sharing approach for two types of resources (a) Registers, and (b) Scratchpad.

2.2.1 Register Sharing

Figure 2.4 shows an example of register allocation scheme, in which we allocate 10K

registers to each thread block TB0 and TB1. The remaining 15K registers are shared

between thread blocks TB2 and TB3 such that each pair of warps in these thread

blocks are allocated 1.5K registers as described next. We refer to TB0 and TB1 as

unshared thread blocks, whereas, TB2 and TB3 as shared thread blocks.

Example 2.2.2. Consider the pair of warps W20 and W30 that participate in sharing.

We allocate 0.5K registers (private or unshared registers) each to W20 and W30.

The remaining 0.5K registers are shared registers, that are allocated to these warps

together in a shared but exclusive manner, i.e., only one of them can access the

16 Improving GPU Performance Through Resource Sharing

(
WarpId,
RegNo

)
Unshared
WarpId?

RegNo
≤ Rwt?

Acquired
Lock?

RF1 RF2 . . . RF32

ALU1 ALU2 ALU32

No Yes

No (Shared Reg)
No (Retry)

Yes

Yes

(a) (b) (c)

(d)

(e)

Figure 2.5: Register Access Mechanism

pool of shared registers at a time. For example, if warp W20 accesses any of the

shared registers first, exclusive access to all the 0.5K shared registers is given to

W20, while W30 is prevented from accessing any of those 0.5K shared registers till

W20 finishes. This implies, W30 can continue its execution until its first access to

any of the 0.5K shared registers and waits until the shared registers are released.

Only after W20 finishes execution, W30 can access the shared registers and continue.

This way, additional warps make some progress, which helps in hiding execution

latencies.

To generalize this idea and to compute the increase in number of thread blocks,

we will consider a GPU that provides R registers per SM. Also, consider a thread

block that requires Rtb registers, and each warp in the thread block requires Rw

registers to complete its execution. To increase the number of thread blocks that

share registers with other existing thread blocks in the SM, we allocate Rtb(1 + t)

(for any threshold 0 < t < 1) registers to each pair of shared thread blocks, instead

of allocating 2Rtb registers to them (in Figure 2.4, t is 0.5). Equivalently we allocate

Rw(1 + t) registers per two warps from these thread blocks (i.e., one warp from

each shared thread block in the pair), such that each of these warps can access

Rwt unshared registers independently, and they can access the remaining Rw(1− t)
shared registers only when granted access.

We allocate registers to a warp dynamically when it requires to access the regis-

ters on its first usage, and we deallocate them from the register file after the warp

has finished its execution, as described in GPGPU-Sim [3]. Every unshared regis-

ter is allocated as per the request, but the shared registers are allocated to only

2.2 Resource Sharing 17

Scratch Pad Memory (SPM) in SM = 35K

w0

w1

...
w9

TB0

(10K SPM)

Unshared

w10

w11

...
w19

TB1

(10K SPM)

Unshared

w20

w21

...
w29

TB2

w30

w31

...
w39

TB3

Shared

(15K SPM)

Figure 2.6: Resource Allocation with Scratchpad Sharing

a warp that has obtained an exclusive access to the shared register. To detect a

register accessed by a warp as shared or unshared, and to efficiently access it from

the register file unit, we modify the existing register file access mechanism as shown

in Figure 2.5. When a warp (WarpId) needs to access a register (RegNo), we first

check if the warp is an unshared warp, i.e., if it belongs to an unshared thread block

(Figure 2.5, Step (b)). If it is an unshared warp, it can directly access the register

from register file using a combination of (WarpId, RegNo). If WarpId is a shared

warp, the accessed register is an unshared register if RegNo ≤ Rwt (Step (c)).

This is because Rwt number of unshared registers are allocated to each warp. If

RegNo > Rwt, we treat the register as a shared register. A warp can access an

unshared register directly from the register file, but it can access a shared register

only when it gets exclusive access by acquiring a lock (Step (e)), otherwise it retries

the access in another cycle1.

2.2.2 Scratchpad Sharing

Figure 2.6 shows an example of Scratchpad Sharing, where we consider a GPU that

has 35K units of scratchpad memory per SM, and each thread block requires 10K

units. To increase number of resident thread blocks with scratchpad sharing, we

allocate 10K units to each TB0 and TB1; the remaining 15K scratchpad units are

allocated together for thread blocks TB2 and TB3 such that each one gets 5K units

1The details of required additional storage units are described in Section 2.4.

18 Improving GPU Performance Through Resource Sharing

(
ThId,

SMemLoc

) ThId ∈
Unshared

ThreadBlock?

SMemLoc
≤ Rtbt?

Acquired
Lock?

S
cr
a
tc
h
p
a
d

ALU

No Yes

No (Shared Loc)
No (Retry)

Yes

Yes

(a) (b) (c)
(d)

(e)

Figure 2.7: Scratchpad Access Mechanism

in private mode and the remaining 5K units are accessed in exclusive mode, i.e.,

only one thread block can access it at a time. Unlike register sharing, we can not

distribute 1.5K scratchpad memory to each pair of warps because any thread within

a thread block can access any scratchpad location allocated for that block. Similar

to register sharing approach, we refer to TB0 and TB1 as unshared thread blocks,

whereas, TB2 and TB3 as shared thread blocks.

When a thread from the shared thread block (say TB2) needs to access a memory

location from shared scratchpad, it gains an exclusive access by acquiring a lock.

As long as TB2 is running, no thread from TB3 can access the shared scratchpad

locations and hence the corresponding warps of TB3 will have to wait for TB2 to

finish before they can proceed further. But warps of TB3 that do not access the

shared scratchpad locations can continue execution.

The implementation to support scratchpad sharing in GPGPU-Sim is shown in

Figure 2.7. The steps for the shared scratchpad access follow the rules similar to

the shared register access. When a thread (Thread Id: ThId) needs to access a

scratchpad location (SMemLoc), we need to check if it is from an unshared thread

block. If it belongs to an unshared thread block, it can access the location directly

from scratchpad memory (Figure 2.7 Step (b)). Otherwise, we need to make another

check if it accesses unshared scratchpad location (Step (c)). The thread accesses

unshared scratchpad location if SMemLoc < Rtbt because we allocate Rtbt units of

scratchpad memory to each of the shared thread blocks. Otherwise, we treat the

location as shared scratchpad location. A thread can access unshared scratchpad

location directly, however it can access the shared scratchpad location only after

2.2 Resource Sharing 19

w1

w2

w3

w4

TB1 TB2

waits for shared registers

waits for shared registers

syncthreads() syncthreads()

Figure 2.8: Deadlock in the Presence of Barrier Instructions

acquiring the exclusive lock as (Step (e)). Otherwise, it retries the access in the

next cycle.

2.2.3 Can Resource Sharing Cause a Deadlock?

Example 2.2.3. Consider a scenario shown in Figure 2.8 with register sharing,

where two thread blocks TB1 and TB2 are in shared mode. Assume that W2 and

W3 have already acquired locks for accessing shared registers. Also, assume that the

warps W2, W3 are waiting for warps W1 and W4 respectively, to arrive at a barrier

instruction (syncthreads()). Now, if warp W1 tries to acquire a lock to access shared

registers from W3, and W4 tries to acquire a lock to access shared registers from W2,

then a deadlock occurs.

To avoid deadlock in the register sharing approach, we always ensure that if

thread blocks TB1 and TB2 share registers, then a warp from TB1 (TB2) can acquire

a lock only when either (a) none of the warps from TB2 (TB1) have acquired a lock for

the shared registers, or (b) the warps from TB2 (TB1) that have acquired exclusive

access to the shared registers have finished their execution. For the above example,

if warp W3 already has acquired a lock, W2 can not acquire a lock, avoiding the

deadlock.

A deadlock can never occur with scratchpad sharing. Consider two thread blocks

TB1 and TB2 that share scratchpad. When a warp from shared thread block (say

TB1) acquires a lock, no other warp from TB2 is given access to the shared scratch-

pad region until TB1 finishes its execution. So, only the warps from TB2 that require

20 Improving GPU Performance Through Resource Sharing

accessing the shared resources wait for TB1 to finish. Warps from TB1 never wait

for TB2 to finish. Hence there is no deadlock cycle.

2.2.4 Computing the Number of Effective Thread Blocks

A naive method of sharing, where each thread block is sharing resources with some

other thread block, may launch more thread blocks as compared to default (non-

sharing) approach. However, the number of thread blocks that make progress (ef-

fective thread blocks) per SM can be less than that for non-sharing.

Example 2.2.4. Consider a configuration where each SM has 36 resource units,

and each thread block requires 10 units of resource. Without any sharing, 3 thread

blocks are resident in each SM. With sharing (say t=0.8), it is possible to launch

4 resident thread blocks in each SM, such that block 1 shares resources with block 2

and together get 18 ((1+0.8)*10) resource units. Similarly, block 3 with shares block

4 and gets 18 resource units. In this case, it can happen that block 2 and 4 start

accessing shared resources causing blocks 1 and 3 to wait. Effectively only two thread

blocks (blocks 2 and 4) will make progress in this naive sharing approach, whereas

all 3 blocks can make progress in the non-sharing approach.

To avoid this, we describe a method to compute the total number of thread blocks

(Shared + Unshared) to be launched per SM such that the number of effective thread

blocks using sharing approach is no less than that of non-sharing approach. We use

the following notations:

1. R: Number of units of resource available per SM,

2. Rtb: Number of resource units required by a thread block,

3. S: Number of pairs of thread blocks that are to be launched per SM in shared

mode,

4. U : Number of thread blocks to be launched in an SM that do not share

resources with any other thread block,

5. M : Maximum number of thread blocks to be launched in an SM,

2.2 Resource Sharing 21

6. t: Threshold for computing the number of resources that a thread block shares

with another thread block. For a given threshold value t (0 < t < 1) we allocate

(1 + t)Rtb resource units per two shared thread blocks, in which (1 − t)Rtb

resource units are shared.

Without sharing, we can launch up to bR/Rtbc thread blocks in an SM, and all of

them make progress. Whereas in our approach, if two thread blocks are launched in

sharing mode, at least one thread block always makes progress. So, when S shared

pairs are launched in an SM, at least S thread blocks always make progress. Also,

if U unshared thread blocks are launched in the SM, they always make progress.

Therefore, at least S + U thread blocks always make progress with our approach.

In order to keep the number of effective thread blocks in our approach to be same

as that of no-sharing approach, we need the following relation to hold:

S + U =

⌊
R

Rtb

⌋
(2.1)

For each shared pair of thread blocks, we allocate Rtb(1 + t) resource units and for

each unshared thread block, we allocate Rtb resource units. Since the total number

of resource units available in the SM is R, we have:

URtb + SRtb(1 + t) ≤ R (2.2)

The total number of thread blocks that can be launched in sharing approach is equal

to the number of unshared thread blocks plus twice the number of shared pairs, i.e.,

M = U + 2S (2.3)

Using Equations 2.1, 2.2, and 2.3,

M =

⌊
R

Rtb

⌋
+

1

t

(
R

Rtb

−
⌊
R

Rtb

⌋)
(2.4)

Since the actual number of thread blocks that can reside in an SM also depends

on other factors, such as (a) maximum number of resident threads per SM, and (b)

maximum number of resident thread blocks per SM; the number of thread blocks

that are launched in an SM by our approach is the minimum of values obtained

22 Improving GPU Performance Through Resource Sharing

Figure 2.9: Warp Scheduling

using the factors (a), (b), and the value M. When the computed number of thread

blocks launched by our approach is more than that of baseline approach (i.e.,
⌊
R
Rtb

⌋
),

we enable our resource sharing approach; otherwise, we launch all the thread blocks

in unsharing mode.

2.3 Optimizations

With the proposed resource sharing approach, each SM has unshared and shared

warps, and scheduling these warps plays a very important role in determining the

performance of applications. We propose an optimization called “Owner Warp First

(OWF)” to schedule these warps effectively. If two thread blocks TBi and TBj are

a shared pair, and at least one of the warps of TBi waits for shared resources from

TBj, we call TBj as Owner Block, and the warps that belong to TBj are called

Owner Warps. TBi is called Non-Owner Block and the warps of TBi are called

2.3 Optimizations 23

Non-Owner Warps. As soon as the owner thread block finishes its execution, it

transfers its ownership to the non-owner thread block (i.e., the non-owner thread

block becomes the owner), and a new non-owner thread block gets launched.

2.3.1 Scheduling Owner Warp First (OWF)

A warp scheduler in the SM issues a warp every cycle from a pool of ready warps.

With our solution, the warps can be categorized into three types viz., unshared,

shared owner and shared non-owner. In register sharing, shared non-owner warps

depend on the corresponding shared-owner warps to release registers, before they

can make progress. Similarly, with scratchpad sharing, warps from non-owner thread

blocks wait for owner thread blocks to complete their execution. Hence scheduling

of the warps plays a role in improving the performance of applications.

Example 2.3.1. Consider a scenario shown in Figure 2.9. Assume that an SM

contains 3 warps: unshared (U), shared owner (O), shared non-owner (N) warps,

and each warp needs to execute three instructions (I1, I2, and I3) as indicated in the

figure. Assume that latency of Mov and Add instruction is 1 cycle, and the latency

of Load instruction is 5 cycles. Also, assume that register R1 is an unshared resource

and R2, R3 are shared resources. If unshared warp is prioritized over owner warp

(shown as Unshared Warp First), the unshared warp executes I1 in the first cycle,

and it starts execution of I2 in the 2nd cycle. However, it can not start I3 in the

3rd cycle because register R2 of I3 is dependent on the instruction I2, and I2 takes 5

cycles to complete the execution. If owner warp is prioritized over non-owner warp,

it can start execution in the 3rd cycle. The non-owner warp which has the least

priority can start its execution I1 at the 5th cycle. However, it can not execute I2

in the 6th cycle because it needs to acquire access to the shared resource R2, which

is held by its owner warp. Hence, it waits until the owner warp releases the shared

resources (i.e., till the 9th cycle). The non-owner warp can resume its execution in

the 10th cycle and can finish in 15 cycles.

To minimize the waiting time of the non-owner warps, we propose an algorithm,

Owner Warp First (OWF), that prioritizes warps in the order: shared owner, un-

shared, and shared non-owner. Giving the highest priority to shared owner warps

24 Improving GPU Performance Through Resource Sharing

helps finish them sooner, and hence the dependent shared non-owner warps can

make progress. Since non-owner warps depend on their corresponding owner warps

for shared resources, giving them low priority helps in hiding stalls when other types

of warps are not ready to run.

Example 2.3.2. As seen in Figure 2.9, with OWF approach, owner warp can finish

sooner, i.e., in 7 cycles. Similarly unshared warp, with second priority, can finish

in 9 cycles. Since the non-owner warp has low priority, it can start executing I1 in

the 5th cycle. It can overlap the execution of I2 with the unshared warp in the 8th

cycle because its owner warp has released the shared resources. Further, it can finish

the execution in 13 cycles, thus improving the overall performance.

2.3.2 Unrolling and Reordering of Register Declarations

In register sharing, non-owner warps need to wait for owner warps when they try

to access shared registers. If the very first instruction issued by a non-owner warp

uses a shared register, then the warp has to wait and can not start its execution

until corresponding owner warp has released the shared register. In order to allow

the non-owner warps to execute as many instructions as possible before stalling due

to unavailability of shared registers, we unroll and reorder the register declarations.

Example 2.3.3. Consider the PTXPlus [3] code shown in Figure 2.10(a), which

is generated by GPGPU-Sim [3] for the sgemm application from Parboil Suite [7].

The first instruction of the code accesses registers p0 and r124, which get the register

sequence numbers as 31 and 35 according to the declaration. These registers are part

of the shared registers for a certain threshold value t. Hence, a non-owner warp has

to wait until the registers are released. To delay accessing the shared registers, we

unroll and rearrange the order of the register declarations so that p0, r124 become

unshared registers (i.e., they get the register sequence numbers as 1 and 3, as shown

in Figure 2.10(b)). Hence the non-owner warps get to execute more number of

instructions before they start accessing shared registers.

To implement this optimization, we converted the assembly code (PTXPlus)

produced by GPGPU-Sim into an optimized assembly code. To achieve this, we

first find an order of registers according to their first usage. Further, to ensure

2.3 Optimizations 25

.reg .u32 $r<27>;

.reg .u32 $ofs<3>;

.reg .pred $p<4>;

.reg .u32 $r124;

.reg .u32 $o127;

............

............

............

............

set.le.s32.s32 $p0/$o127,

s[0x003c], $r124;

mov.u32 $r16, $r124;

mov.u32 $r17, $r124;

mov.u32 $r9, $r124;

mov.u32 $r18, $r124;

mov.u32 $r10, $r124;

/* Code here */

.reg .pred $p0;

.reg .u32 $o127;

.reg .u32 $r124;

.reg .u32 $r16;

.reg .u32 $r17;

.reg .u32 $r9;

.reg .u32 $r18;

.reg .u32 $r10;

............

............

set.le.s32.s32 $p0/$o127,

s[0x003c], $r124;

mov.u32 $r16, $r124;

mov.u32 $r17, $r124;

mov.u32 $r9, $r124;

mov.u32 $r18, $r124;

mov.u32 $r10, $r124;

/* Code here */

(a) Normal Declarations (b) Unrolled Declarations

Figure 2.10: Unrolling and Reordering of Register Declarations

that unshared registers are used before shared registers, we modify the register

declarations so that a register that has been used first is declared first. Finally,

we modified the GPGPU simulator to use optimized PTXPlus code for simulating

instructions. This optimization can be easily integrated at assembly level using

CUDA compiler.

2.3.3 Dynamic Warp Execution

A study by Kayiran et. al. [46] shows that the performance of memory-bound appli-

cations can degrade with increase in the number of resident thread blocks. Executing

additional thread blocks can increase L1/L2 cache misses, which leads to increase in

the stall cycles. In register sharing, the additional warp (non-owner warp) resumes

its execution as soon as its corresponding owner warp finishes, while in scratchpad

sharing non-owner warps wait until its corresponding owner thread block finishes.

In order to reduce the number of additional stalls due to the execution of non-owner

warps in register sharing, we propose an optimization that can dynamically enable

or disable execution of long latency instructions (memory) issued by the non-owner

warps.

26 Improving GPU Performance Through Resource Sharing

To control the execution of memory instructions from the non-owner warps, we

monitor the number of stall cycles for each SM. When executing memory instructions

from non-owner warp leads to increase in the number of stalls, we decrease the

probability of executing further memory instructions from the non-owner warps.

To illustrate this, consider a GPU that has N SMs, all in sharing mode. Our

approach disables execution of memory instructions for the non-owner warps, only

on a specific SM (e.g. SM0). Every other SM, SMi for i ∈ {1 . . . N − 1}, allows

execution of memory instructions for the non-owner warps, and compares its stall

cycles periodically with the stalls on SM0. If stalls observed in the SMi are more than

the stalls appearing in SM0, then the probability of executing memory instructions

on SMi from the non-owner warps is decreased by a predetermined value p. If the

stalls in SMi are less than that in SM0, then the probability of executing memory

instructions on SMi from the non-owner warps is increased by the same value p.

Thus, we reduce the number of stall cycles by controlling the execution of memory

instructions.

After running several experiments, we selected the periodicity of monitoring to

be 1000 cycles, which is to ensure that (a) the monitoring overhead is not high,

and (b) sufficient number of stall cycles are observed. In our experiments, initially

all the SMs (except SM0) are allowed to execute all memory instructions, i.e., the

probability of executing memory instructions from non-owner warp is 1. Depending

on the stall cycles observed for an SMi (i ∈ {1 . . . N − 1}), this probability for SMi

is decreased or increased by p = 0.1, but is kept within interval [0, 1] as a saturating

counter.

2.4 Hardware Requirement

Figure 2.11 shows the modified architecture to implement our proposed resource

sharing approach. There are mainly two changes in the scheduling logic. The first

change is that the warp scheduler uses OWF policy to prioritize warps, using the

owner information. The second change is the inclusion of resource access check. A

warp is considered to be ready for issuing only when it can access the required re-

sources (resource access check) and has all its operands available (scoreboard check).

The resource access unit follows the resource access mechanism (Figure 2.5 and Fig-

2.4 Hardware Requirement 27

In the additional storage units, X dimension of each table refers to the number of bits, and Y

dimension refers to the number of entries.

Figure 2.11: Modified Architecture for Resource Sharing

ure 2.7), and uses some additional storage units (shown in grey color in Figure 2.11)

to determine the access to resources.

2.4.1 Storage Units Required for Register Sharing

1. Each SM requires a bit (shown as ShSM in Figure 2.11 in Additional Storage

Units corresponding to Register Sharing) to specify whether sharing mode is

enabled for it. This bit will be set when the number of thread blocks assigned

to the SM using resource sharing is more than the default number of thread

blocks per SM.

2. Each resident thread block stores its shared thread block id in the ShTB table,

shown in the figure. If a thread block is in unsharing mode, its corresponding

value is set to -1. For T thread blocks, T dlog2(T + 1)e (assuming ids 0 to T-1

for T thread blocks, we can use id T to represent -1) bits are required per SM.

3. Each warp requires a bit for specifying the owner information, which is stored

28 Improving GPU Performance Through Resource Sharing

in Owner table in the figure. This bit is set only when the warp is an owner

warp. Hence, for W warps, W bits are needed.

4. Each warp requires a bit to specify whether it is in sharing or unsharing mode

(shown as ShWarp table in the figure). A warp is set to be in sharing mode,

when its corresponding thread block is in sharing mode. For W warps in an

SM, W bits are required. For a warp in shared mode, its corresponding shared

warp can be identified using the sharer thread block id of its thread block and

its relative position in the thread block.

5. Each pair of shared warps uses a lock variable to access the shared registers

exclusively. The lock variable is set to the id of the warp which has gained

access to the shared registers. This is maintained in the Lock table in the

figure. If an SM has W warps, there can be a maximum of bW/2c shared pairs

of warps in the SM. Hence, we need a total of bW/2c dlog2W e bits per SM.

2.4.2 Storage Units Required for Scratchpad Sharing

1. Similar to register sharing, scratchpad sharing approach also requires ShSM,

ShTB, and Owner tables as described above. These tables are shown in Fig-

ure 2.11 in Additional Storage Units corresponding to Scratchpad Sharing.

2. Each pair of shared thread blocks uses a lock variable to access the shared

locations exclusively. The lock variable is set to the id of the thread block

which has gained access to the shared scratchpad region. If an SM has T

thread blocks, there can be a maximum of bT/2c shared pairs of thread blocks

in the SM. Hence, we need a total of bT/2c dlog2 T e bits per SM. Similar

to register sharing, these values are maintained in the Lock table, shown in

Figure 2.11 for scratchpad sharing.

The total amount of storage required (in bits) for a GPU with N SMs for imple-

menting register sharing is:

(1 + T dlog2(T + 1)e+ 2W + bW/2c dlog2W e) ∗N

2.5 Experiments and Analysis 29

Table 2.4: Set-3: Benchmarks Limited by Threads or Blocks

Benchmark Application Kernel Limited by
Rodinia backprop bpnn layer Threads

forward CUDA
GPGPU-Sim BFS Kernel Threads
Rodinia gaussian FAN2 Blocks
GPGPU-Sim NN executeSecondLayer Blocks

and for implementing scratchpad sharing is:

(1 + T dlog2(T + 1)e+W + bT/2c dlog2 T e) ∗N

For the architecture shown in Table 2.3, the additional storage required per SM

is 273 bits for register sharing and 93 bits for scratchpad sharing.

In addition to storage units, the resource access unit requires two comparator

circuits to implement the steps (b) and (c) shown in Figures 2.5 and 2.7. Similarly,

it requires an arithmetic circuit to set the lock as shown in step (e).

2.5 Experiments and Analysis

We implemented our approach using GPGPU-Sim V3.X [3]. Table 2.3 shows the

baseline architecture used for comparison. We evaluated our approach on several

applications from GPGPU-Sim [14], Rodinia [19], CUDA-SDK [2], and Parboil [7]

benchmarks. Depending on the resource requirement of applications, we divided

the benchmarks into three sets. Set-1 (Table 2.1) consists of applications whose

number of thread blocks per SM are limited by registers, and hence register sharing

approach is applicable to them. Set-2 (Table 2.2), which is applicable to scratchpad

sharing, has applications that are limited by scratchpad memory. For Set-1 appli-

cations (for register sharing), we set the scratchpad memory per SM to 48KB so

that their number of resident thread blocks are not limited by scratchpad memory

after applying register sharing. Set-3 (Table 2.4) has applications that are limited

neither by registers nor by scratchpad memory (i.e., they are limited either by the

number of resident threads or the number of resident thread blocks). We choose

Set-3 applications to ensure that our approach does not degrade the performance

30 Improving GPU Performance Through Resource Sharing

of applications that are neither limited by registers nor scratchpad memory. For

each application in Table 2.1 and Table 2.2, we show names of the kernels used

for evaluation and the number of threads per thread block. In Table 2.1, we re-

port the number of registers per thread for each kernel, which GPGPU-Sim uses

to compute the number of resident thread blocks, and in Table 2.2 we show the

amount of scratchpad memory used by each thread block. We simulated all the

applications using PTXPlus assembly language, because (1) this chapter deals with

register resource, also PTXPlus uses more optimal number of registers since it is

directly obtained from SASS (2) this chapter require implementing more hardware

features (which require GPGPU-Sim framework) and less software features.

We use the value of threshold (t) to configure the percentage of resource sharing.

For example, if each thread block requires Rtb units of resource, and we choose

t = 0.1, then we allocate 1.1 ∗ Rtb resource units per two shared thread blocks,

which means 90% of resource units (Rtb) are used as shared resource units. So for a

given threshold t, we can compute the percentage of resource sharing as (1− t)∗100.

We analyzed the performance of our approach for each application by varying t and

chose the threshold value as 0.1 (i.e., 90% resource sharing) for our results (Details

are discussed in Section 2.5.1.8).

We measure the performance of our approach using the following metrics, which

are reported by GPGPU-Sim [3]:

1. The Number of Resident Thread Blocks: It indicates the number of thread

blocks that are launched in an SM. We choose this metric to compare the

amount of TLP that is present in an SM.

2. Instructions Per Cycle (IPC): It is the number of instructions that are sim-

ulated per core clock cycle. We use it to measure the performance of our

modified GPU architecture with respect to benchmark applications.

3. Simulation Cycles: It is the number of cycles that a kernel takes to complete

its simulation. We use this metric to measure performance of benchmarks

applications with our modified GPU architecture.

4. Pipeline Stall Cycle: It is the cycle in which no warp can execute an instruction

because the execution units are busy. This is to show that our approach can

2.5 Experiments and Analysis 31

(a)

 0

 2

 4

 6

 8

 10

backprop

b+tree
hotspot

LIB MUM
mri-q

sgemm

stencilN
u
m

b
e
r

o
f
T

h
re

a
d
 B

lo
c
k
s

Unshared-LRR
Shared-OWF-Unroll-Dyn

(b)

 0

 2

 4

 6

 8

 10

CO
NV1

CO
NV2

lavaM
D

NW
1
NW

2
SRAD1

SRAD2

N
u
m

b
e
r

o
f
T

h
re

a
d
 B

lo
c
k
s

Unshared-LRR

Shared-OWF

Figure 2.12: Comparing Number of Resident Thread Blocks of Baseline Approach
with (a) Register Sharing (b) Scratchpad Sharing

help in hiding the long latency instructions.

5. Idle Cycle: It is the cycle in which no warp is ready to execute next instruction.

We choose this metric to show that the additional thread blocks launched by

our approach help in minimizing the cycles in which SMs are idle.

2.5.1 Analyzing Benchmarks that are Applicable to Resource

Sharing

2.5.1.1 Increase in the Number of Thread Blocks

Figures 2.12(a) and (b) show that resource sharing helps in increasing the number

of thread blocks launched for the applications. Figure 2.12(a) compares the effective

number of thread blocks launched by register sharing approach (denoted as Shared-

OWF-Unroll-Dyn) with that of baseline implementation (denoted as Unshared-

LRR). For applications MUM, backprop, hotspot, and mri-q our approach is able

to launch 6 thread blocks (i.e., 1536 threads), which is the limit on the number of

resident threads per SM. Applications stencil and b+tree launch 3 thread blocks per

SM, compared to 2 in the baseline approach. For applications LIB and sgemm our

approach is able to launch 8 thread blocks per SM, which is the limit on the number

of resident thread blocks.

32 Improving GPU Performance Through Resource Sharing

(a)

-5%

0%

5%

10%

15%

20%

25%

backprop

b+tree
hotspot

LIB MUM
mri-q

sgemm

stencil

Im
p
ro

v
e
m

e
n
t
in

 I
P

C

Shared-OWF-Unroll-Dyn

(b)

0%

5%

10%

15%

20%

25%

30%

CONV1

CONV2

lavaMD

NW1
NW2

SRAD1

SRAD2

Im
p
ro

v
e
m

e
n
t
in

 I
P

C

Shared-OWF

Figure 2.13: Performance Comparison of (a) Register Sharing (b) Scratchpad Shar-
ing with Baseline Approach

In Figure 2.12(b), we compare the number of resident thread blocks launched

by scratchpad sharing (labeled as Shared-OWF) with baseline approach. For appli-

cations CONV1, NW1, and NW2, we launch 8 thread blocks per SM, which is the

limit on the number of resident thread blocks.

2.5.1.2 Performance Analysis

Figure 2.13(a) shows the improvement in IPC with register sharing over baseline

LRR (Loose Round Robin) implementation. We observe that applications show

an average (Geometric Mean) improvement of 11% with register sharing. Appli-

cations b+tree, hotspot, MUM, and stencil achieve significant speedups of 11.98%,

21.76%, 24.14%, and 23.45% respectively. Similarly Figure 2.13(b) shows the perfor-

mance improvement in IPC with scratchpad sharing. We observe that applications

show an average improvement of 12.5% with scratchpad sharing. CONV2, lavaMD,

and SRAD1 achieve speedups of 15.85%, 29.96%, and 25.73% respectively. These

applications leverage all our optimizations to perform better. The performance im-

provement in IPC for lavaMD is due to two reasons: (1) The number of resident

thread blocks launched by our approach is twice that of baseline approach (2) No in-

struction that uses scratchpad memory location falls into shared scratchpad. Note

that this is the run-time behavior of the application. In this case, all the addi-

tional thread blocks execute instructions without waiting for shared thread blocks.

Though LIB launches 8 thread blocks per SM with register sharing, it improves

2.5 Experiments and Analysis 33

(a)

-5%

0%

5%

10%

15%

20%

backprop

b+tree
hotspot

LIB MUM
mri-q

sgemm

stencilR
e
d
u
c
ti
o
n
 i
n
 S

im
u
la

ti
o

n
 C

y
c
le

s Shared-OWF-Unroll-Dyn

(b)

0%

5%

10%

15%

20%

25%

CONV1

CONV2

lavaMD

NW1
NW2

SRAD1

SRAD2R
e
d
u
c
ti
o
n
 i
n
 S

im
u
la

ti
o
n
 c

y
c
le

s Shared-OWF

Figure 2.14: Percentage Decrease in Simulation Cycles (a) Register Sharing (b)
Scratchpad Sharing

only by 0.84%. It is due to increase in L2 cache misses caused by additional shared

blocks. The benchmarks backprop and sgemm achieve modest improvements of

5.82% and 4.06% respectively with register sharing. Similarly, CONV1, NW1, and

NW2 show improvements of 4.33%, 5.62%, and 9.03% respectively with scratchpad

sharing. mri-q slows down by 0.72% because additional shared blocks increase L1

cache misses and hence increase the number of stalls. SRAD2 shows improvement

only up to 0.1% because a barrier instruction placed next to shared scratchpad ac-

cess limits the progress of shared threads that do not access any shared scratchpad

location.

In Figures 2.14(a) and (b), we show the percentage decrease in the number of

simulation cycles with register and scratchpad sharing when compared to baseline

approach. Since the number of instructions executed in our approach is same as

that of the baseline approach, all the applications that show improvement in IPC in

Figures 2.13(a) and (b) will take less the number of simulation cycles for completing

their execution using our approach. That is why Figure 2.13 and Figure 2.14 show

similar trend.

2.5.1.3 Effectiveness of Optimizations

Figure 2.15(a) compares register sharing optimizations with baseline approach. We

compare the results of register sharing when we do not use any optimization and

34 Improving GPU Performance Through Resource Sharing

(a)

-10%

0%

10%

20%

30%

backprop

b+tree
hotspot

LIBMUM
mri-q

sgemm

stencil

Im
p
ro

v
e
m

e
n
t
in

 I
P

C

Shared-LRR-NoOpt
Shared-LRR-Unroll

Shared-LRR-Unroll-Dyn
Shared-OWF-Unroll-Dyn

(b)

-5%
0%
5%

10%
15%
20%
25%
30%

CONV1

CONV2

lavaMD

NW1
NW2

SRAD1

SRAD2

Im
p
ro

v
e
m

e
n
t
in

 I
P

C

Shared-LRR-NoOpt
Shared-OWF

Figure 2.15: Performance Analysis of Optimizations for (a) Register Sharing (b)
Scratchpad Sharing

use the existing baseline LRR scheduling policy (labeled Shared-LRR-NoOpt). Con-

sider the application hotspot, it achieves a speedup of 13.65% even without using

any optimization because the additional thread blocks launched by our approach

help in hiding execution latencies. With register unrolling optimization (labeled

Shared-LRR-Unrolled), we further see an improvement up to 15.18% because reg-

ister unrolling enables threads to execute more instructions before they start ac-

cessing shared registers. Hence it can execute more instructions before it accesses

shared registers. When we enable the dynamic warp execution (labeled Shared-

LRR-Unrolled-Dyn), we see an improvement only up to 14.58% because it limits

the execution of memory instructions from non-owner warps. However when we

apply the OWF optimization (labeled Shared-OWF-Unrolled-Dyn), the application

speeds further up to 21.76%. With OWF optimization, the priority of non-owner

warps decreases compared to the other warps. Hence the memory instructions is-

sued by non-owner warps do not interfere with the other warps, which minimizes

the L1/L2 cache misses. We see that b+tree behaves similarly to hotspot in terms

of performance gain by varying the optimizations.

MUM slows down by 0.15% when we do not use any optimization. We observe

that increase in the resident thread blocks leads to increase in the number of mem-

ory instructions issued by non-owner warps, increasing L1 and L2 cache misses.

Though we see an increase in the L1/L2 cache misses, the other instructions issued

2.5 Experiments and Analysis 35

by the non-owner warps help in minimizing the stall cycles. With register unrolling

optimization, we see a slight improvement (0.08%). When we apply the dynamic

warp execution, it shows a speed up of 6.45%. From this, we analyze that dynamic

warp execution reduces the additional stall cycles produced by issuing memory in-

structions from the non-owner warps. Further with OWF optimization, performance

improves up to 24.14% because of the decrease in interference from non-owner warps.

LIB shows an improvement of 2% using sharing with no optimizations. We

observe the same performance even with unrolling optimization because the number

of instructions that use unshared registers before they start accessing shared registers

is exactly the same as without optimization. With dynamic warp execution, we

still observe the same since in this application all the owner warps have completed

executing all instructions before any non-owner warp starts issuing any memory

instructions. With OWF optimization, we observe a small degradation because of

increase in the number of stall cycles compared to the LRR policy.

The benchmarks sgemm, backprop, and stencil achieve good improvements only

when OWF optimization is enabled. Since instructions issued by non-owner warps

execute with the least priority, they do not interfere with other warps and hence

minimize L1/L2 cache misses. We do not see any performance improvement with

mri-q because the additional thread blocks increase L1 cache misses with our ap-

proach. However the slow down was reduced to 0.72% in the presence of all the

optimizations.

To summarize, memory-bound applications, like MUM, take advantage of our

sharing approach in the presence of dynamic warp execution and OWF optimiza-

tions. Whereas, compute-bound applications, like hotspot, perform better even with-

out any optimizations, and they further improve with OWF optimization.

In Figure 2.15(b), we show the effect of OWF optimization on scratchpad shar-

ing. lavaMD shows an improvement of 28% even without any optimization (la-

beled shared-LRR-NoOpt). It is because additional thread blocks do not access any

memory location which belongs to shared scratchpad memory. CONV1, CONV2,

SRAD1, and SRAD2 applications show improvements of 5.68%, 6.21%, 11.1%, and

5.28% respectively without applying optimization, which is due to additional thread

blocks that help in hiding the latencies.

With OWF optimization, CONV2, NW1, NW2, and SRAD1 applications im-

36 Improving GPU Performance Through Resource Sharing

(a)

-1%

0%

1%

2%

3%

4%

backprop

b+tree
hotspot

LIB MUM
mri-q

sgemm

stencil

Im
p
ro

v
e
m

e
n
t
in

 I
P

C

Shared-OWF-Unroll-Dyn

(b)

-2%

0%

2%

4%

6%

8%

10%

12%

CONV1

CONV2

lavaMD

NW1
NW2

SRAD1

SRAD2

Im
p
ro

v
e
m

e
n
t
in

 I
P

C

30%

Shared-OWF

Figure 2.16: Performance Comparison of (a) Register Sharing (b) Scratchpad Shar-
ing with GTO (Baseline) Scheduler

prove up to 15.85%, 5.62%, 9.03%, and 25.73% respectively. Since OWF optimiza-

tion schedules the owner warps efficiently, it helps in minimizing stall cycles thus

improving IPC value. lavaMD improves up to 30% since it has more benefit with

sharing than OWF optimization. CONV1 and SRAD2 perform better when no

optimization is applied because these applications go through extra cache misses

(L1 and L2) and extra stall cycles with OWF optimization when compared to no

optimization.

2.5.1.4 Comparison with Other Schedulers

In Figures 2.16(a) and (b), we show the performance improvement in the register

sharing and the scratchpad sharing, respectively, over GTO (Greedy Then Old)

scheduler. We observe that our approach shows an improvement up to 3.9% with

register sharing and shows an improvement up to 30% with scratchpad sharing.

backprop shows the same number L2 misses as the baseline GTO, but it has more L1

misses with our approach. In stencil, we observe extra L2 misses with our approach.

NW1 and NW2 degrade with our approach because they have less number of stall

cycles with GTO scheduler than our approach. Further, as shown in Figure 2.17(a)

and (b) we observe an improvement up to 27.22% with register sharing and up to

27.08% with scratchpad sharing over the two-level scheduling policy.

2.5 Experiments and Analysis 37

(a)

-5%

0%

5%

10%

15%

20%

25%

30%

backprop

b+tree
hotspot

LIB MUM
mri-q

sgemm

stencil

Im
p
ro

v
e
m

e
n
t
in

 I
P

C

Shared-OWF-Unroll-Dyn

(b)

0%

5%

10%

15%

20%

25%

30%

CONV1

CONV2

lavaMD

NW1
NW2

SRAD1

SRAD2

Im
p
ro

v
e
m

e
n
t
in

 I
P

C

Shared-OWF

Figure 2.17: Performance Comparison of (a) Register Sharing (b) Scratchpad Shar-
ing with Two-Level (Baseline) Scheduler

2.5.1.5 Reduction in Idle and Stall Cycles

In Figures 2.18(a) and (b), we report percentage decrease in the number of idle cycles

and pipeline stall cycles when compared to the baseline approach. We observe that,

all applications but one show reduction in the number of idle cycles (up to 99%).

This is expected because with the increase in the number of thread blocks, number

of instructions that are ready to execute also increase. For MUM, LIB, backprop,

hotspot, and stencil the stall cycles also reduce with register sharing. Similarly for

CONV2, NW1, NW2, SRAD1, and SRAD2 applications, number of stall cycles

reduce with scratchpad sharing. It indicates the additional thread blocks launched

with our approach hide the long execution latencies in a better way. We observe an

increase in the stall cycles for applications b+tree and sgemm. However, since the

number of idle cycles have significantly reduced, overall we see a benefit with our

approach. For mri-q, the number of stall cycles increases with our approach due

to the increase in L1 cache misses. lavaMD shows an increase of 259 stall cycles

because the additional threads wait for execution units (SP units) to become ready.

For CONV1 we see an increase in number of stalls with our approach due to L1

cache misses.

38 Improving GPU Performance Through Resource Sharing

(a)

-20%

0%

20%

40%

60%

80%

100%

backprop

b+tree
hotspot

LIBMUM
mri-q

sgemm

stencil

R
e
d
u
c
ti
o
n
 i
n
 c

y
c
le

s

Stall Cycles
Idle Cycles

(b)

-20%

0%

20%

40%

60%

80%

100%

CONV1

CONV2

NW1
NW2

SRAD1

SRAD2

R
e
d
u
c
ti
o
n
 i
n
 c

y
c
le

s

Pipeline Stall Cycles
Idle Cycles

Note that lavaMD is not shown in (b) as it has zero stall cycles in baseline approach and 259

cycles in shared-OWF approach. It shows 49.5% decrease in idle cycles.

Figure 2.18: Percentage Decrease in Stalls and Idle Cycles for (a) Register Sharing
(b) Scratchpad Sharing

2.5.1.6 The Progress of Additional Warps

Figure 2.19 shows the effectiveness of resource sharing by measuring the progress

made by the additional warps launched in our approach. In the figure, we report

the percentage of simulation cycles in which an additional warp made progress till it

becomes an owner warp. In the figure, the average over all additional warps is shown,

denoted as Active Cycles. For register sharing, an additional warp makes progress

in two phases: (1) from the time it is launched till it starts waiting for the shared

resources from its corresponding shared warp (2) from the time its shared warp has

finished the execution till its corresponding shared thread block has finished the

execution (where the warp becomes the owner). In case of scratchpad sharing, an

additional warp can make progress from the time it is launched till it needs to wait

for shared resources.

The Figures 2.19(a) and (b), show the results for register sharing and scratchpad

sharing respectively. From Figure 2.19(a), we observe the additional warps could

make progress up to 56% with registers sharing. We find that sgemm and stencil

make very less progress because their additional warps need to start accessing the

shared resources early, and the resources are released by their shared warps very

late. For LIB, we observe that some additional warps have a short life time, and

2.5 Experiments and Analysis 39

(a)

0%

10%

20%

30%

40%

50%

60%

backprop

b+tree
hotspot

LIB MUM
mri-q

sgemm

stencil

A
c
ti
v
e
 C

y
c
le

s

Shared-OWF-DYN
Shared-OWF-Unroll-DYN

(b)

0%

5%

10%

15%

20%

25%

30%

CONV1

CONV2

lavaMD

NW1
NW2

SRAD1

SRAD2

A
c
ti
v
e
 C

y
c
le

s

100%

Shared-OWF

Figure 2.19: Effectivenss of the Additional Thread Blocks with (a) Register Sharing
(b) Scratchpad Sharing

their shared resources are released early. Hence, these warps could make more

progress in their life time. Figure 2.19(a) also shows that unrolling and reordering

of register declarations is less effective since the additional warps access the shared

resources early even after the optimization. From Figure 2.19(b), we notice that

additional warps progress up to 100% with scratchpad sharing. Further, results

of scratchpad sharing are more effective than that of register sharing because the

additional warps in the Set-2 applications spend significant time before they start

accessing any scartchpad memory.

2.5.1.7 Resource Savings

We also compare our approach against LRR Scheduler that uses twice the number

of resources. In Figure 2.20(a), the baseline approach (labeled as Unshared-LRR-

Reg#65536) uses 64K registers, whereas our approach uses only 32K registers. Even

with an increase in the number of registers and hence an increase in the number of

resident thread blocks in the baseline approach, our approach performs better in 5

out of 8 applications. MUM performs better with our approach, even though the

number of thread blocks is same (6) in both the approaches because dynamic warp

execution optimization helps minimizing the stalls produced by the additional thread

blocks. sgemm, b+tree, and LIB perform better with the baseline approach due to

an increase in the number of resident thread blocks and hence an increase in the

40 Improving GPU Performance Through Resource Sharing

(a)

 100

 200

 300

 400

 500

 600

MUM
LIB backprop

b+tree
hotspot

sgemm

stencil

mri-q

In
s
tr

u
c
ti
o
n
s
 P

e
r

C
y
c
le

Unshared-LRR-Reg#65536
Shared-OWF-Unroll-Dyn-Reg#32768

(b)

 0

 100

 200

 300

 400

 500

 600

CONV1

CONV2

lavaMD

NW1
NW2

SRAD1

SRAD2

In
s
tr

u
c
ti
o
n
s
 P

e
r

C
y
c
le

Unshared-LRR-ShMem#32K
Shared-OWF-ShMem#16K

Figure 2.20: Comparison with LRR that Uses Twice the Number of (a) Registers
(b) Scratchpad

number of active warps. In Figure 2.20(b), we compare scratchpad sharing approach

that uses 16K bytes of memory with that of baseline approach that uses 32K byes of

memory. From the figure we observe that, performance of CONV1, NW1, and NW2

is comparable to that of baseline approach because our approach can launch the

same number of thread blocks as the baseline approach. lavaMD performs better

than baseline approach because sharing helps in minimizing latencies. CONV2,

SRAD1, and SRAD2 degrade with our approach because number of resident thread

blocks in our approach is less, and number of stall cycles in our approach is more

compared to baseline approach.

2.5.1.8 Effect of Sharing on Performance

In Table 2.5 and Table 2.7, we analyze the performance of resource sharing approach

with the amount of sharing. From the results we observe that, most of the appli-

cations perform better when the amount of sharing is 90%. It is because, as shown

in Tables 2.6 and 2.8, with increase in the amount of resource sharing, the number

of resident thread blocks will increase. These resident thread blocks help in hiding

long latencies and hence help in achieving high throughput. From the Tables 2.5 and

2.7, we also notice that, all applications behave same at 0% and 10% sharing. At

these percentages of sharing, the number of resident thread blocks that are launched

with our approach is same as that of baseline implementation. However, the perfor-

2.5 Experiments and Analysis 41

Table 2.5: Effect on IPC with Register Sharing

% Sharing 0% 10% 30% 50% 70% 90%
backprop 389.9 389.9 389.9 389.9 394.1 392.8
b+tree 318.5 318.5 318.5 323.3 326.1 326.1
hotspot 489.5 489.5 489.5 475.2 476.9 503.59
LIB 218.0 218.0 203.0 203.0 216.3 223.3
MUM 190.5 190.5 190.5 192.1 192.4 194.9
mri-q 303.7 303.7 303.7 303.7 305.3 305.0
sgemm 490.6 490.6 490.6 490.6 446.3 496.7
stencil 448.2 448.2 448.2 448.2 448.2 440.8

Table 2.6: Effect on Resident Thread Blocks with Register Sharing

% Sharing 0% 10% 30% 50% 70% 90%
backprop 5 5 5 5 6 6
b+tree 2 2 2 3 3 3
hotspot 3 3 3 4 4 6
LIB 4 4 5 5 6 8
MUM 4 4 4 5 5 6
mri-q 5 5 5 5 6 6
sgemm 5 5 5 5 6 8
stencil 2 2 2 2 2 3

mance is not same as baseline approach since in these cases we leverage our OWF

optimization. With OWF, the warps are arranged according to the priorities of the

owner, the unshared, and the non-owner warps. Since there are no additional thread

blocks, all the thread blocks are in unshared mode. Hence, OWF optimization sorts

the warps according to their dynamic warp ids. SRAD2 (Table 2.7) performs better

at 50%, because at this sharing, the number of instructions that get executed before

they start enter the shared scratchpad memory region is more than that at 90%.

Also at 50% sharing, these extra instructions belong to loop statements, hence we

observe more IPC values.

42 Improving GPU Performance Through Resource Sharing

Table 2.7: Effect on IPC with Scratchpad Sharing

% Sharing 0% 10% 30% 50% 70% 90%
CONV1 280.33 280.33 280.33 280.33 288.82 292.24
CONV2 119.29 119.29 119.29 119.29 119.02 124.6
lavaMD 452.29 452.29 452.29 452.29 452.29 578.85
NW1 39.96 39.96 39.96 38.67 38.37 38.37
NW2 41.93 41.93 41.93 42.14 40.54 39.72
SRAD1 188.13 188.13 188.13 229.38 208.27 204.32
SRAD2 63.48 63.48 63.48 63.52 63.62 68.29

Table 2.8: Effect on Resident Thread Blocks with Scratchpad Sharing

% Sharing 0% 10% 30% 50% 70% 90%
CONV1 6 6 6 6 7 8
CONV2 3 3 3 3 3 4
lavaMD 2 2 2 2 2 4
NW1 7 7 7 8 8 8
NW2 7 7 7 8 8 8
SRAD1 2 2 2 3 4 4
SRAD2 3 3 3 3 3 5

2.5.1.9 Performance Comparison with Warp-Level Divergence [92]

Figure 2.21 shows the performance comparison of resource sharing with the warp-

level divergence [92] approach proposed by Xiang et al. We implemented their

approach and evaluated on our experimental setup shown in Table 2.3. In Fig-

ure 2.21(a), we report the percentage increase in the IPC of applications with regis-

ter sharing w.r.t Unshared-LRR and compare it with that of warp-level divergence.

Similarly, we show the increase in IPC with scratchpad sharing w.r.t and Unshared-

LRR and compare it with that of warp-level divergence in Figure 2.21(b).

From Figure 2.21(a), we observe that applications show an average improvement

(shown as G.Mean) of 2.87% with warp-level divergence, whereas, with register

sharing, they show an average improvement of 10.99%. Consider the applications

b+tree and hotspot. They perform better with warp-level divergence than with reg-

ister sharing. This behavior can be expected because the warps from the additional

partial thread block launched by their approach can progress without waiting for

2.5 Experiments and Analysis 43

(a)

-20%
-10%

0%
10%
20%
30%
40%

backprop

b+tree

hotspot

LIB
M

UM
m

ri-q
sgem

m

stencil

G
.M

ean

In
c
re

a
s
e
 i
n
 I
P

C

Warp-Level Divergence
Shared-OWF-Unroll-Dyn

(b)

-5%
0%
5%

10%
15%
20%
25%
30%
35%

CO
NV1

CO
NV2

lavaM
D

NW
1
NW

2
SRAD1

SRAD2

G
.M

ean

In
c
re

a
s
e
 i
n
 I
P

C

Warp-Level Divergence
Shared-OWF

Figure 2.21: Performance comparison of (a) Register Sharing (b) Scratchpad Sharing
with Warp-Level Divergence [92].

any other warps. Also, as discussed in Section 2.5.1.3, these applications benefit

from the increase in the number of thread blocks without any further optimizations.

However for backprop, MUM, mri-q, sgemm, and stencil applications, register shar-

ing performs better than warp-level divergence. This is because register sharing not

only increases the number additional thread blocks but also manages the their warps

effectively using our optimizations. For LIB, register sharing is comparable to that

of warp-level divergence.

Figure 2.21(b) shows the performance comparison of scratchpad sharing and

warp-level divergence. All the applications shown in the figure are limited by scratch-

pad memory. Hence, warp-level divergence can not increase the number of thread

blocks/warps, consequently, it does not affect the performance of applications. How-

ever, with scratchpad sharing, we can launch additional thread blocks by exploiting

unutilized scratchpad memory and improve the performance (on an average 12.47%).

2.5.2 Analyzing Benchmarks that are not Applicable to Re-

source Sharing

The performance of register sharing and scratchpad sharing approach for the Set-3

applications (Table 2.4) is presented in Figures 2.22(a) and (b) respectively. As

discussed earlier, these applications are not limited by the number of available re-

44 Improving GPU Performance Through Resource Sharing

 0
 150
 300
 450
 600
 750

backprop

BFS
gaussian

NN

In
s
tr

u
c
ti
o
n
s
 P

e
r

C
y
c
le

Unshared-LRR
Shared-LRR-Unroll-Dyn

Unshared-GTO
Shared-GTO-Unroll-Dyn
Shared-OWF-Unroll-Dyn

 0
 150
 300
 450
 600
 750

backprop

BFS
gaussian

NN

In
s
tr

u
c
ti
o
n
s
 P

e
r

C
y
c
le

Unshared-LRR
Shared-LRR

Unshared-GTO
Shared-GTO
Shared-OWF

(a) (b)

Figure 2.22: Performance Analysis of Set-3 Applications for (a) Register Sharing
(b) Scratchpad Sharing

sources but due to other factors such as the number of threads or thread blocks. We

measure their performance when our approach uses (1) LRR scheduling policy, (2)

GTO scheduling policy, and (3) OWF scheduling policy1. From Figures 2.22(a) and

(b), we observe that our proposed resource sharing approach when used with LRR

scheduling (labeled as Shared-LRR-Unroll-Dyn) performs exactly same as the base-

line LRR scheduling (Unshared-LRR). Since the number of thread blocks launched

by the applications are not limited by the resources, our approach does not launch

any additional thread blocks, and all the thread blocks are in unsharing mode.

Hence, it behaves exactly similar to the baseline approach. Similarly, our approach

when used with the GTO scheduling policy (Shared-GTO-Unroll-Dyn), performs ex-

actly same as the baseline approach that uses GTO scheduling policy without sharing

(Unshared-GTO). Finally, we observe that with OWF scheduling policy (Shown as

Shared-OWF-Unroll-Dyn), our approach is comparable to that of Unshared-GTO

implementation. In OWF optimization, the warps are arranged according to the

priorities of the owner, the unshared, and the non-owner warps. Since in this case,

we do not launch any additional thread blocks, all the thread blocks are in unshared

mode. Hence all the unshared warps are sorted according to their dynamic warp id.

So the performance of Shared-OWF-Unroll-Dyn is similar to that of Unshared-GTO

1We do not use two-level scheduling policy because it cannot be directly integrated with our
sharing approach.

2.6 Summary 45

implementation.

From the results of Set-1, Set-2, and Set-3 benchmark applications we can say

that, if the number of thread blocks launched by an application is limited either

by registers or by scratchpad memory (as shown in Set-1 and Set-2), then they can

leverage our sharing approach to improve their performance. When they are limited

either by the number of resident threads or by the number of thread blocks, our ap-

proach does not launch any additional thread blocks, and they perform comparable

to the baseline approach.

2.6 Summary

This chapter proposed sharing of some resources of SM to minimize their wastage

by launching additional thread blocks in each SM. For effective utilization of these

additional thread blocks, we proposed optimizations which further help in reducing

the stalls produced in the system. We validated our approach for register sharing

and for scratchpad sharing on several applications that underutilize register and

scratchpad memory and showed improvements up to maximum 24% and average

11% with register sharing, and maximum 30% and average 12.5% with scratchpad

sharing. For the remaining applications, our approach performs comparable to the

baseline approach.

46 Improving GPU Performance Through Resource Sharing

Chapter 3

Improving Scratchpad Sharing

with Compiler Optimizations

3.1 Introduction

In Chapter 2, we presented the resource sharing approach which improves the GPU

performance by increasing the TLP. It launches additional thread blocks in each SM

that use wasted resources of the SM and share some resources with other resident

thread blocks in the SM. However, note that, the performance achieved by the

resource sharing technique is limited by the amount of the TLP that is exhibited

the additional thread blocks. In other words, the performance gain depends on the

progress made by the shared thread blocks (non-owner) while accessing the unshared

resource without waiting for shared resource. A non-owner shared thread block can

make more progress if the shared resources are held for minimum time. Hence, to

improve the TLP, it is important to allocate the resources into shared and unshared

parts such that access to the shared resource has a short duration.

Moreover in GPUs, the resources held by a thread block are released only after

the thread block finishes its execution. As a result, when a shared thread block

acquires a shared resource, it is released only after the shared thread block finishes

its execution. This limits the amount of thread-level-parallelism that is exhibited a

non-owner thread block because it can access the shared resource only after its owner

shared thread block has finished its execution even though the shared resources need

48 Improving Scratchpad Sharing with Compiler Optimizations

Figure 3.1: Release of Shared Scratchpad

not be accessed till towards the end of execution. This limitation is observed more

in case of scratchpad memory, where a thread block may not access scratchpad

memory till the end of execution.

We explain these limitations with suitable examples in the context of scratchpad

memory and motivate the need for compile time optimizations to improve the TLP

further.

3.1.1 The Need for Compiler Optimizations

In scratchpad sharing, when two thread blocks (say, TB0 and TB1) are launched

in shared mode, one of them accesses the shared scratchpad region at a time. As

soon as one thread block, say TB0, starts accessing the shared scratchpad region,

the other thread block, TB1, can not access the shared scratchpad region and hence

may have wait until TB0 finishes execution.

Example 3.1.1. Consider the CFG in Figure 3.1, which is obtained for SRAD1

application [19]. In the figure, the program point marked L corresponds to the last

access to the shared scratchpad. In this case, the shared scratchpad region will be

3.1 Introduction 49

Figure 3.2: Access Ranges of Scratchpad Variables

released only at the end of the last basic block (Exit node of CFG) even though it is

never accessed after L.

Further in scratchpad sharing, the allocation of scratchpad variables into shared

and unshared scratchpad can affect the availability of the shared scratchpad region,

and hence the effectiveness of sharing.

Example 3.1.2. Consider the scenario in Figure 3.2, where a kernel function de-

clares four equal sized scratchpad variables V1 to V4. The figure also shows the

regions of the kernel within which different variables are accessed. If V1 and V4 are

allocated into shared scratchpad region, then the shared scratchpad region is accessed

from program point P1 to program point P8. However, when V2 and V3 are allocated

to shared scratchpad region, the shared region is accessed for a shorter duration, i.e.,

from program point P3 to program point P6.

Note that the choice of allocation of scratchpad variables does not affect the

correctness of the program.

50 Improving Scratchpad Sharing with Compiler Optimizations

3.1.2 Contributions

To improve the availability of shared scratchpad memory, we have developed static

analysis that helps in allocating scratchpad variables into shared and unshared

scratchpad regions such that the shared scratchpad variables are needed only for a

short duration. To promote the release of shared scratchpad region before the end of

kernel execution, we introduce a new hardware instruction (PTX instruction) called

relssp. It releases the shared scratchpad memory at run-time when all the threads

of a thread block have finished accessing shared scratchpad memory. We describe

an algorithm to help compiler in an optimal placement of the relssp instruction in a

kernel such that the shared scratchpad can be released as early as possible, without

causing any conflicts among shared thread blocks. These optimizations improve the

availability of shared scratchpad memory.

To summarize, we make the following contributions in this chapter:

1. We present a static analysis to layout scratchpad variables in order to minimize

the shared scratchpad region.

2. We introduce a hardware instruction, relssp, and an algorithm for optimal

placement of relssp in the user code to release the shared scratchpad region at

the earliest.

3. We used the GPGPU-Sim [14] simulator and the Ocelot [21] compiler frame-

work to implement and evaluate our ideas. On several kernels from various

benchmark suites, we achieved an average improvement of 19% and a maxi-

mum improvement of 92.17% (with scratchpad sharing) over the baseline ap-

proach.

In the rest of the chapter, Section 3.2 provides the details of compiler optimiza-

tions. Section 3.3 analyzes the complexity of our approach. Section 3.4 shows the

experimental results, and Section 3.5 summarizes the chapter.

3.2 Compiler Optimizations

In this section we describe a compile time memory allocation scheme and an analysis

to optimally place relssp instructions. The memory allocation scheme allocates

3.2 Compiler Optimizations 51

scratchpad variables into shared and unshared region such that shared scratchpad

variables are accessed only for a small duration during the run-time.

Computing the optimal minimum shared scratchpad region at compile-time is

hard. This is due to several unknown factors such as (1) number of iterations of

the loop, (2) program control flow, (3) memory access patterns; cache misses, and

(4) optimal scheduling policies at various stage of the pipeline etc. However, we can

make approximations to reduce to access to shared scratchpad region.

In the thesis, the metric we use to reduce the shared scratchpad region is the

number of instructions present in the shared region. This depends on (1) the number

of iterations of loops (2) control flow nature of the program. Since it is not possible

to statically bound the number of instructions executed at run-time, we approximate

loop bounds. Also, in case of branch diverging points, we consider the path that

contains maximum number of instructions in it. Any approximation is safe since, as

noted earlier, it only affects the effectiveness of sharing, but not the correctness1.

To simplify the description of the required analyses, we make the following as-

sumptions:

• The control flow graph (CFG) for a function (kernel) has a unique Entry and

a unique Exit node.

• There are no critical edges in the CFG. A critical edge is an edge whose source

node has more than one successor and the destination node has more than one

predecessor. The absence of critical edges is required for optimal insertion of

relssp instruction (discussed in Section 3.2.3).

These assumptions are not restrictive as any control flow graph can be converted to

the desired form using a preprocessing step involving simple graph transformations:

adding a source node, adding a sink node, and adding a node to split an edge [43,

47, 74].

3.2.1 Minimizing Shared Scratchpad Region

Consider a GPU that uses scratchpad sharing approach such that two thread blocks

involved in sharing can share a fraction f < 1 of scratchpad memory. Assume

1Profiling and user annotations can help in finding better approximations for the loop bounds.
However, we have not used these in our current implementation.

52 Improving Scratchpad Sharing with Compiler Optimizations

that each SM in the GPU has M bytes of scratchpad memory, the kernel that is

to be launched into the SM has N scratchpad variables1, and each thread block

of the kernel requires Mtb bytes of scratchpad memory. We allocate a subset S of

scratchpad variables into shared scratchpad region such that:

(1) The total size of the scratchpad variables in the set S is equal to the size of

shared scratchpad (f ×Mtb), and

(2) The region of access for variables in S is minimal in terms of the number of

instructions.

To compute the region of access for S, we define access range for a variable as

follows:

Definition 3.2.1. Access Range of a Variable: A program point π is in the

access range of a variable v if both the following conditions hold: (1) There is an

access (definition or use) of v on some path from Entry to π and (2) There is an

access of v on some path from π to Exit.

Intuitively, the access range of a variable covers every program point between

the first access and the last access of the variable in an execution path. The access

range for a variable can contain disjoint regions due to branches in the flow graph.

Definition 3.2.2. Access Range of a Set of Variables: A program point π is in

the access range of a set of variable S if both the following conditions hold: (1) There

is an access to a variable v ∈ S on a path from Entry to π and (2) There is an access

to a variable v′ ∈ S on a path from π to Exit.

Example 3.2.1. Consider a kernel whose CFG is shown in Figure 3.3. The kernel

uses 3 scratchpad variables A, B and C. Variable A is accessed in the region from

basic block BB1 to basic block BB4. The start of basic block BB2 is considered in

access range of A because there is a path from Entry to start of BB2 that contains

an access of A (definition in BB1) and there is a path from the start of BB2 to Exit

that contains the access of A (use in BB4).

1In this thesis, we only address the scratchpad variables whose memory is allocated at compile
time (like variables declared with primitive data types, arrays, but not pointers).

3.2 Compiler Optimizations 53

Figure 3.3: Access Ranges of Variables

Consider the set S = {B, C}. Basic block BB4 is in access range of S because

there is a path from Entry to BB4 containing the access of B (definition in BB2), and

there is a path from BB4 to Exit containing the access of the C (use in BB6).

To compute the access ranges for a program, we need a forward analysis to find

the first access of the scratchpad variables, and a backward analysis to find the

last access of the scratchpad variables. We define these analyses formally using the

following notations:

• IN(BB) denotes the program point before the first statement of the basic block

BB. OUT(BB) denotes the program point after the last statement of BB.

• PRED(BB) denotes the set of predecessors, and SUCC(BB) denotes the set of

successors of BB.

54 Improving Scratchpad Sharing with Compiler Optimizations

• PreIN(v,BB) is true if there is an access to variable v before IN(BB).

PreOUT(v,BB) is true if there is an access to the variable v before OUT(BB).

• PostIN(v,BB) is true if there is an access to variable v after IN(BB).

PostOUT(v,BB) is true if there is a access to variable v after OUT(BB).

• AccIN(S,BB) is true if IN(BB) is in access range of a set of scratchpad vari-

ables S. AccOUT(S,BB) is true if OUT(BB) is in access range of a set of

scratchpad variables S.

The data flow equations to compute the information are:

PreOUT(v,BB) =

true, if BB has an access of v

PreIN(v,BB), otherwise

PreIN(v,BB) =


false, if BB is Entry block∨
BP∈PRED(BB)

PreOUT(v,BP), otherwise

PostIN(v,BB) =

true, if BB has an access of v

PostOUT(v,BB), otherwise

PostOUT(v,BB) =


false, if BB is Exit block∨
BS∈SUCC(BB)

PostIN(v,BS), otherwise

We decide whether the access range of a set of scratchpad variables S includes

the points IN(BB) and OUT(BB) as:

AccIN(S,BB)=(
∨
v∈S

PreIN(v,BB))
∧

(
∨
v∈S

PostIN(v,BB))

AccOUT(S,BB)=(
∨
v∈S

PreOUT(v,BB))
∧

(
∨
v∈S

PostOUT(v,BB))

The above analysis can be extended easily to compute information at any point

inside a basic block.

Example 3.2.2. Table 3.1 shows the program points in the access ranges of scratch-

pad variables for CFG of Figure 3.3. The table also shows the program points in the

access ranges of sets of two scratchpad variables each.

3.2 Compiler Optimizations 55

Table 3.1: Access Ranges for Scratchpad Variables and Sets.

t denotes true, f denotes false. Sets of variables are written as concatenation of variables. For

example, AB denotes {A, B}.
For Variables For Sets of Variables
IN OUT IN OUT

Block A B C A B C AB BC CA AB BC CA

Entry f f f f f f f f f f f f
BB1 f f f t f f f f f t f t
BB2 t t f t t f t t t t t t
BB3 t t f t t f t t t t t t
BB4 t f f f f f t t t f t t
BB5 f f f f f t f t t f t t
BB6 f f t f f f f t t f f f
Exit f f f f f f f f f f f f

Let SV denote the set of all scratchpad variables. For every subset S of SV

having a total size equal to the size of shared scratchpad memory, our analysis

counts the total number of instructions in the access range of S. Finally the subset

that has the minimum count is selected for allocation in the shared scratchpad

memory.

Example 3.2.3. Consider once again the CFG in Figure 3.3. For simplicity, as-

sume that all the variables have equal sizes, and each basic block contains the same

number of instructions. Consider a scratchpad sharing approach that can allocate

only two of the variables into the shared scratchpad region. From the CFG, and

from Table 3.1, it is clear that when A and B are allocated into shared scratchpad

memory, the shared region is smaller, compared to when either {B,C} or {A,C} are

allocated in the shared region.

3.2.2 Implementation of relssp Instruction

In scratchpad sharing approach (Section 2.2.2), a shared thread block acquires a

lock before accessing shared scratchpad region and unlocks it only after finishing

its execution. This causes a delay in releasing the shared scratchpad because the

thread block holds the scratchpad memory till the end of its execution, even if it

has finished accessing shared region.

56 Improving Scratchpad Sharing with Compiler Optimizations

1 void ReleaseSSP ()

2 {

3 static int count=0;
4 ++count;
5 if(count== ACTIVE_THREADS){
6 count=0;
7 UnlockSharedRegion();

8 }

9 }

Figure 3.4: Pseudocode of relssp Instruction

To minimize the delay in releasing the shared scratchpad, we propose a new

instruction, called relssp, in PTX assembly language. The semantics of relssp in-

struction is to unlock the shared region only when all active threads within a thread

block finished executing the shared region. Here, we use the notion of active threads

according to GPGPU-Sim [3] implementation. In GPGPU-Sim, additional threads

are padded to a thread block to make the number of threads in the thread block a

multiple of the warp size. These additional threads do not execute kernel instruc-

tions and are considered to be inactive, and the remaining threads are considered

to be active.

Figure 3.4 shows the pseudo code for relssp instruction. The ReleaseSSP()

procedure maintains count, an integer initialized to zero. When an active thread

within a thread block executes a relssp instruction, it increments the count value.

When all active threads of a thread block execute relssp instruction (Line 5, when

count equals ACTIVE THREADS), the shared region is unlocked by invoking Unlock-

SharedRegion(). The unlock procedure releases the shared scratchpad region by

resetting the lock variable. The execution of relssp by a thread block that does not

access shared scratchpad region has no effect.

It is clear that count in Figure 3.4 has to be a shared variable, hence a software

implementation will require to manage critical section. The same algorithm, how-

ever, can be efficiently implemented in a hardware circuit as shown in Figure 3.5.

The ith thread within a thread block is associated with an active mask (Ai) and a

release bit (Ri). The mask Ai is set if the ith thread is active. When this thread

executes relssp instruction, the release bit (Ri) gets set. The shared scratchpad

3.2 Compiler Optimizations 57

Figure 3.5: Hardware Implementation of relssp Instruction

region is unlocked only when all the active threads in a thread block execute relssp

instruction (the lock bit, i. e. the output of NAND gate becomes 0 in Figure 3.5).

In other words, shared scratchpad region is unlocked if ∀i Ai → Ri is true.

3.2.3 Algorithm for Optimal Placement of relssp Instruc-

tion

In Section 3.2.2, we introduced a new instruction to release the shared scratchpad

memory. In this section, we discuss a compile-time analysis for optimal insertion of

relssp instruction in the program. We insert a relssp instruction at a program point

π such that the following conditions are met:

1. Safety: The relssp instruction must be executed by each active thread within

a thread block, and it must be executed after last access to shared scratchpad

memory.

2. Optimality: The relssp instruction must be executed by each active thread

exactly once.

Condition (1) (Safety) ensures that shared scratchpad is eventually released by

a thread block since the instruction is executed by all the threads of a thread block.

Also, it guarantees that shared scratchpad is released only after a thread block

58 Improving Scratchpad Sharing with Compiler Optimizations

has completed using it. Whereas, Condition (2) (Optimality) avoids redundant

execution of relssp instruction.

In the scratchpad sharing, a thread block releases the shared scratchpad memory

after completing its execution, hence it is equivalent to having a relssp instruction

placed at the end of the program, which guarantees both the conditions, albeit at

the cost of delay in releasing the shared scratchpad. A simple improvement that

promotes early release of shared scratchpad memory and ensures both the conditions,

is to place the relssp instruction at a basic block BBpostdom where BBpostdom is a

common post dominator of those basic blocks having the last accesses to the shared

scratchpad memory along different paths. Further, BBpostdom should dominate Exit,

i.e., it should be executed in all possible execution paths. As the following example

shows, this strategy, though an improvement over placing relssp in Exit, may also

result in delaying the release of shared scratchpad memory.

Example 3.2.4. Consider a CFG shown in Figure 3.6. Assume that L1, L2 denote

the program points that correspond to the last accesses to shared scratchpad memory.

Since relssp instruction is to be executed by all the threads of thread block, it can be

placed at the post dominator of the basic blocks BB3 and BB9, i.e., program point

marked π in BB12, which is visible to all threads. However, this delays the release

of shared scratchpad.

Consider a thread that takes a path along BB9, it can execute relssp immediately

after executing the last access to shared region (shown as OPT3 in the figure). It

executes relssp at program point π. Similarly, when a thread takes a path along the

basic block BB4, it releases the shared scratchpad at π even though it does not access

any shared scratchpad in that path. The scratchpad can be released at program point

OPT2 in BB4.

As is clear from the above example, placement of relssp instruction has an effect

on the availability of shared scratchpad memory. Intuitively, a safely placed relssp

instruction at a program point π can be moved to a previous program point π′

in the same basic block provided the intervening instructions do not access shared

scratchpad. The movement of relssp from a basic block BB to predecessor BB′ is

possible provided every other successor of BB′ also does so.

3.2 Compiler Optimizations 59

Figure 3.6: Possible Insertion Points for relssp

Example 3.2.5. Figure 3.7(a) shows a basic block BB1, which has the last access

to the shared scratchpad memory at L1. In this block, if the relssp instruction can

be placed safely at the program point π1, then it can be moved to π2 since there is

no access to shared scratchpad memory between π1 and π2. However, it can not be

moved to the program point π3 within the same basic block, because it violates safety

(Condition 1).

Consider another scenario shown in Figure 3.7(b), basic block BB2 has the last

access to shared memory at L2, and basic blocks BB1, BB3, and BB4 do not access

any scratchpad memory. If the relssp instruction can be placed safely at π4 in BB4,

then it can be moved to a program point π5 and π7 in the basic blocks BB2 and BB3

60 Improving Scratchpad Sharing with Compiler Optimizations

Figure 3.7: Scenarios for Optimal Insertion of relssp

respectively. However, it can not be moved to program point π6 in BB2 and π8 in

BB1 since it violates of Condition 1. Also, the relssp instruction can not be moved

from π7 in BB3 to π8 in BB1 since the basic block BB2, which is a successor of

BB1, does not allow the relssp instruction to be placed at π8.

We now formalize these intuitions into a backward data flow analysis. The

notations used are:

• IN(BB) denotes the program point before the first statement of the basic block

BB. OUT(BB) denotes the program point after the last statement of BB.

• SafeIN(BB) is true if the relssp instruction can be safely placed at IN(BB),

and SafeOUT(BB) is true if the relssp instruction can be safely placed at

OUT(BB).

• INSπ, if true, denotes that relssp will be placed at program point π by the

analysis.

The data flow equations are:

3.3 Analysis of Compiler Optimizations 61

SafeIN(BB) =

 false, if BB has shared scratchpad access

SafeOUT(BB), otherwise

SafeOUT(BB) =


true, if BB is Exit block∧
BS∈SUCC(BB)

SafeIN(BS), otherwise

The above equations compute the program points where relssp can be placed

safely. For a basic block BB, OUT(BB) is an optimal place for relssp instruction,

if relssp can be placed safely at OUT(BB), and it can not be moved safely to its

previous program point in the basic block, i.e., IN(BB) is false. This is computed

as:

INSOUT(BB) = SafeOUT(BB) ∧ ¬(SafeIN(BB)) (3.1)

Similarly, IN(BB) is an optimal point for relssp instruction, when the instruction

can not be moved to its predecessors (absence of critical edges guarantees that

the instruction can either be moved to all predecessors or to none). This can be

computed as:

INSIN(BB) = ¬

 ∧
BP∈PRED(BB)

SafeOUT(BP)

 ∧ SafeIN(BB) (3.2)

Equations (3.1) and (3.2) together, along with the absence of critical edges,

ensure the optimality condition that each thread executes the relssp instruction

exactly once. Thus, our compiler optimizations help in progressing the shared thread

blocks that are present in each SM by releasing shared scratchpad and minimizing

the access to shared scratchpad region. Hence the shared thread blocks in each SM

finish their execution early. Subsequently new shared thread blocks are launched

early. Thus a kernel can finish its execution early.

3.3 Analysis of Compiler Optimizations

The dataflow analyses to compute definitions and usages of scratchpad variables

(Section 3.2.1) are bit-vector data flow analyses [47]. For a kernel with n scratchpad

variables and m nodes (basic blocks) in the flow graph, the worst case complexity

is O(n×m2) (assuming set operations on n bit-wide vectors take O(n) time).

62 Improving Scratchpad Sharing with Compiler Optimizations

Table 3.2: GPGPU-Sim Architecture

Resource Configuration
Number of SMs 14
Scratchpad Memory per SM 16KB
Number of Registers (32 bit) per SM 65536
Max Number of TBs per SM 16
Max Number of Threads per SM 3072
Warp Scheduling LRR
L1-Cache per SM 16KB
DRAM Scheduler FR-FCFS

The computation of access ranges for sets of variables may require analyzing all

O(2n) subsets in the worst case, where the largest size of a subset is O(n). Thus,

given the usage and definitions at each program point in the kernel, computation of

AccIN and AccOUT requires O(m×n×2n) time. Therefore, the total time complexity

is O(n ×m2 + m × n × 2n). Since the number of scratchpad variables in a kernel

function is small (typically, n ≤ 10), the overhead of the analysis is practical.

Our approach inserts relssp instructions in a CFG such that relssp is called

exactly once along any execution path. In the worst case, all nodes in a CFG

(except Entry and Exit blocks) might fall along different paths from Entry to Exit.

Hence the worst case number of relssp inserted is O(m).

3.4 Experimental Evaluation

We integrated the proposed relssp instruction in GPGPU-Sim V3.x [3] simulator.

We implemented the compiler optimizations in PTX assembly [6] using Ocelot [21]

framework. The baseline architecture that we used for comparing our approach

is shown in Table 3.2. Note that, to evaluate our approach on more number of

kernels, we increased the number of resident thread blocks, threads, and register file

size in each SM in Table 3.2 as compared to the GPU configuration in Table 2.3

(Chapter 2). We evaluated our approach on several kernels from CUDA-SDK [2],

GPGPU-Sim [14], and Rodinia [19] benchmark suites.

Depending on the amount and the last usage of the shared scratchpad memory by

the applications, we divided the benchmark applications into three sets. Set-1 and

3.4 Experimental Evaluation 63

Table 3.3: Benchmark Applications for which the Number of Thread Blocks is Lim-
ited by Scratchpad Memory

Benchmark Application Kernel #Scratchpad Scratchpad Block
Variables Size (Bytes) Size

Set-1: Shared scratchpad can be released before the end of the kernel
1. RODINIA backprop bpnn layerforward CUDA 2 9408 256
2. CUDA-SDK dct8x8 1 (DCT1) CUDAkernel2DCT 1 2112 64
3. CUDA-SDK dct8x8 2 (DCT2) CUDAkernel2IDCT 1 2112 64
4. CUDA-SDK dct8x8 3 (DCT3) CUDAkernelShortDCT 1 2176 128
5. CUDA-SDK dct8x8 4 (DCT4) CUDAkernelShortIDCT 1 2176 128
6. GPGPU-SIM NQU solve nqueen cuda kernel 5 10496 64
7. RODINIA srad v2 1 (SRAD1) srad cuda 1 6 13824 576
8. RODINIA srad v2 2 (SRAD2) srad cuda 2 5 11520 576

Set-2: Shared scratchpad can not be released before the end of the kernel
9. CUDA-SDK FDTD3d FiniteDifferencesKernel 1 3840 128

10. RODINIA heartwall kernel 8 11872 128
11. CUDA-SDK histogram histogram256Kernel 1 9216 192
12. CUDA-SDK marchingCubes (MC1) generateTriangles 2 9216 32
13. RODINIA NW1 needle cuda shared 1 2 8452 32
14. RODINIA NW2 needle cuda shared 2 2 8452 32

Table 3.4: Set-3 Benchmarks: The Number of Thread Blocks is Not Limited by
Scratchpad Memory

Benchmark Application Kernel Limited by
GPGPU-SIM BFS Kernel Threads, Registers
RODINIA b+tree findRangeK Registers
CUDA-SDK dct8x8 5 (DCT5) CUDAkernel1DCT Blocks
RODINIA gaussian FAN1 Threads
GPGPU-SIM NN executeSecondLayer Blocks

Set-2 (Table 3.3) consists of applications whose number of resident thread blocks are

limited by scratchpad memory. For Set-1, the applications do not access scratchpad

memory till towards the end of their execution, while for Set-2, the applications

access scratchpad memory till towards the end of their execution. The introduction

of relssp instruction is expected to give benefit over the scratchpad sharing approach

(discussed in Chapter 2) only for Set-1 applications. Set-3 benchmarks (Table 3.4)

consist of applications whose number of thread blocks are not limited by scratch-

pad memory, but by some other parameter. These are included to show that our

approach does not negatively affect the performance of applications that are not

limited by scratchpad memory.

For each application in Set-1 and Set-2 benchmarks, Table 3.3 shows the kernel

that is used for evaluation, the number of the scratchpad variables declared in each

64 Improving Scratchpad Sharing with Compiler Optimizations

kernel, the amount of the scratchpad memory required for each thread block, and

the thread block size. Some applications in Set-1 and Set-2 benchmarks are modified

to make sure that the number of thread blocks is limited by scratchpad memory,

thus making scratchpad sharing approach applicable. These changes increase the

scratchpad memory requirement per thread block. For Set-3 benchmarks, Table 3.4

shows the cause of limitation on the number of thread blocks. The causes include

the limit on the number of registers, the maximum limit on the number of resident

thread blocks, and the maximum limit on the number of resident threads.

We compiled all the applications using CUDA 4.0 and simulated using the

GPGPU-Sim simulator. We simulated all the applications using their PTX rep-

resentation since (1) the compiler optimizations deal with only scratchpad memory

and not the registers (2) the chapter requires more static analysis features, which

are not currently supported by GPGPU-Sim, but they are supported in Ocelot [21]

(a widely used framework for PTX transformations).

CUDA 4.0 is used since GPGPU-Sim and Ocelot do not support CUDA 5.0 and

above. We configured the threshold (t) value to 0.1. For any loop with non-constant

bounds on the number of iterations of the loop, we assumed a bound of 1024.

We measure the performance of our approach using the following metrics:

1. The number of the resident thread blocks launched in the SMs. This is

a measure of the amount of thread level parallelism present in the SMs.

2. The number of instructions executed per shader core clock cycle

(IPC). This is a measure of the throughput of the GPU architecture.

3. The number of simulation cycles that an application takes to complete its

execution. This is a measure of the performance of the benchmark applications.

3.4.1 Analyzing Benchmarks that are Limited by Scratch-

pad Memory

We use Unshared-LRR to denote the baseline unsharing approach, Shared-OWF

to denote our scratchpad sharing approach with OWF scheduler (as described in

Chapter 2), and Shared-OWF-OPT to denote the scratchpad sharing approach that

includes OWF scheduler and compiler optimizations.

3.4 Experimental Evaluation 65

 0

 2

 4

 6

 8

 10

 12

 14

 16

backprop

D
C
T1

D
C
T2

D
C
T3

D
C
T4

N
Q
U

SR
AD

1

SR
AD

2

FD
TD

3d

heartw
all

histogram

M
C
1

N
W

1
N
W

2

#
T

h
re

a
d

 B
lo

c
k
s

Unshared-LRR Shared-OWF Shared-OWF-OPT

Figure 3.8: Comparing the Resident Thread Blocks

3.4.1.1 Comparing the Number of Resident Thread Blocks

Figure 3.8 shows the number of thread blocks for the three approaches. For ap-

plications DCT1 and DCT2, Unshared-LRR launches 7 thread blocks in the SM

according to the amount of scratchpad memory required by their thread blocks.

Shared-OWF launches 14 thread blocks in the SM, where each of the 7 additional

thread blocks share scratchpad memory with other resident thread blocks. For

DCT3 and DCT4 applications, Unshared-LRR launches 7 thread blocks in the SM,

whereas Shared-OWF launches 12 thread blocks in the SM such that the additional

5 thread blocks share scratchpad memory with the existing 5 thread blocks; while

the remaining 2 existing thread blocks in the SM do not share scratchpad mem-

ory with any other thread block. For FDTD3d, Shared-OWF launches 2 additional

thread blocks in the SM when compared to Unshared-LRR, which share scratch-

pad memory with other 2 resident thread blocks. For the remaining applications,

Unshared-LRR launches 1 thread block, whereas Shared-OWF launches 1 additional

thread block in the SM which shares scratchpad memory with the existing thread

block. Note that the number of thread blocks launched by Shared-OWF-OPT is ex-

actly same as that of Shared-OWF. This is expected since the number of additional

thread blocks launched by scratchpad sharing approach depends on two parameters:

(1) the amount of scratchpad sharing, and (2) the amount of scratchpad memory

required by a thread block; and our compiler optimizations do not affect either of

these parameters.

66 Improving Scratchpad Sharing with Compiler Optimizations

3.4.1.2 Performance Comparison

Figure 3.9 shows the performance of Shared-OWF and Shared-OWF-OPT 1 in terms

of the number of instructions executed per cycle (IPC) when compared to Unshared-

LRR. We also present the details of individual optimizations in Section 3.4.1.4. From

the figure, we observe a maximum improvement of 92.17% and an average (Geo-

metric Mean, shown as G. Mean in the figure) improvement of 19% with Shared-

OWF-OPT when compared to Unshared-LRR. The figure shows that most of the

applications benefit with our compiler optimizations. backprop shows an improve-

ment of 74.2%, it leverages both scratchpad sharing and the compiler optimizations

to perform better. heartwall achieves 92.17%, because the additional thread blocks

launched by Shared-OWF-OPT do not access the shared scratchpad region. Hence

all the additional thread blocks make progress without waiting for corresponding

shared thread blocks. MC1 improves by 32.32% because additional thread blocks

launched in the SM make significant progress before accessing shared scratchpad re-

gion. The improvements in SRAD1 and SRAD2 applications are largely due to the

compiler optimizations. FDTD3d slows down (–2.29%) with Shared-OWF-OPT due

to more number of L1 and L2 cache misses when compared to Unshared-LRR. his-

togram does not benefit from sharing since the thread blocks start accessing shared

scratchpad region early in the execution, causing one of the blocks from each sharing

pair to wait for the lock.

3.4.1.3 Overhead of relssp Instruction

Table 3.5 shows the run-time overhead of inserting relssp instruction. We report sum

of the number of instructions executed by all threads for Unshared-LRR, Shared-

OWF, and Shared-OWF-OPT. We also report the number of threads launched.

From the table, we observe that the number of instructions executed by Unshared-

LRR and Shared-OWF is same. This is because Shared-OWF does not insert

relssp instruction, and hence the input PTX assembly is not altered. Shared-OWF-

OPT increases number of executed instructions as it inserts relssp and, in some

cases, GOTO instruction to split critical edges. For the applications DCT1, DCT2,

1IPC for Shared-OWF-OPT also takes into account the extra instructions inserted by the
compiler optimizations.

3.4 Experimental Evaluation 67

-5%

0%

5%

10%

15%

20%

25%

30%

35%

backprop

D
C
T1

D
C
T2

D
C
T3

D
C
T4

N
Q
U

SR
AD

1

SR
AD

2

FD
TD

3d

heartw
all

histogram

M
C
1

N
W

1
N
W

2
G
.M

ean

In
c
re

a
s
e

 i
n

 I
P

C

45, 74% 92, 92%

Shared-OWF
Shared-OWF-OPT

Figure 3.9: Comparing the IPC

SRAD1, SRAD2, NW1, and NW2, the number of additionally executed instructions

(shown as Difference (SO-U) in the table) is equal to number of threads because

Shared-OWF-OPT inserts only the relssp instruction. Further, each thread executes

relssp exactly once. For FDTD3d, heartwall, histogram, and MC1 applications, the

number of additional instructions executed by Shared-OWF-OPT is twice that of

number of threads. For these applications, each thread executes two additional in-

structions, i.e., one relssp instruction, and one GOTO instruction for splitting a

critical edge. For backprop, DCT3, DCT4, and NQU applications, some threads

take a path that has two additional instructions (GOTO and relssp), while other

threads take the path which has one additional relssp instruction.

3.4.1.4 Effectiveness of Optimizations

Figure 3.10 shows the effectiveness of our optimizations with scratchpad sharing. We

observe that all applications, except FDTD-3d and histogram, show some benefit

with scratchpad sharing even without any optimizations (shown as Shared-NoOpt).

With OWF scheduling (Shared-OWF), applications improve further because OWF

schedules the resident warps in a way that the non-owner warps help in hiding

long execution latencies. For our benchmarks, minimizing shared scratchpad region

(shown as Shared-OWF-Reorder) does not have any noticeable impact. This is

because (a) Most applications declare only a single scratchpad variable (Table 3.3)

in their kernel, hence the optimization is not applicable (there is only one possible

68 Improving Scratchpad Sharing with Compiler Optimizations

Table 3.5: Comparing the Number of Simulated Instructions

Benchmark Threads Unshared-LRR Shared-OWF Shared-OWF-OPT Difference
(U) (S) (SO) (SO - U)

backprop 1,048,576 131,203,072 131,203,072 133,234,688 2,031,616
DCT1 32,768 9,371,648 9,371,648 9,404,416 32,768
DCT2 32,768 9,502,720 9,502,720 9,535,488 32,768
DCT3 32,768 11,255,808 11,255,808 11,304,960 49,152
DCT4 32,768 11,157,504 11,157,504 11,206,656 49,152
NQU 24,576 1,282,747 1,282,747 1,331,515 48,768
SRAD1 4,161,600 756,433,955 756,433,955 760,595,555 4,161,600
SRAD2 4,161,600 450,077,975 450,077,975 454,239,575 4,161,600
FDTD3d 144,384 5,549,531,392 5,549,531,392 5,549,820,160 288,768
heartwall 17,920 11,280,920 11,280,920 11,316,760 35,840
histogram 46,080 893,769,168 893,769,168 893,861,328 92,160
MC1 3,008 2,881,568 2,881,568 2,887,584 6,016
NW1 3,184 5,580,458 5,580,458 5,583,642 3,184
NW2 3,168 5,561,919 5,561,919 5,565,087 3,168

order of scratchpad variable declarations); and (b) For the remaining applications,

the scratchpad declarations are already ordered in the optimal fashion, i.e., the

access to shared scratchpad region is already minimal.

The addition of relssp instruction at the postdominator and at the optimal places

is denoted as Shared-OWF-PostDom and Shared-OWF-OPT respectively. All Set-1

applications improve with either of these optimizations because the relssp instruction

helps in releasing the shared scratchpad memory earlier. For backprop and SRAD2

applications, Shared-OWF-PostDom is better than Shared-OWF-OPT because the

threads in backprop execute one additional GOTO instruction with Shared-OWF-

OPT (Shared-OWF-PostDom does not require critical edge splitting). SRAD2 has

more number of stall cycles with Shared-OWF-OPT as compared to Shared-OWF-

PostDom. For most of the other benchmarks, Shared-OWF-OPT performs better as

it can push relssp instruction earlier than with Shared-OWF-PostDom, thus releasing

shared scratchpad earlier allowing for more thread level parallelism.

As expected, Set-2 applications do not show much benefit with Shared-OWF-

PostDom or Shared-OWF-OPT since they access shared scratchpad memory till

towards the end of their execution. Hence both the optimizations insert relssp

instruction in the Exit block in the CFGs. The application heartwall does not use

shared scratchpad memory and hence it shows maximum benefit even without the

3.4 Experimental Evaluation 69

-5%
0%
5%

10%
15%
20%
25%
30%
35%

backprop

D
C
T1

D
C
T2

D
C
T3

D
C
T4

N
Q
U

SR
AD

1

SR
AD

2

FD
TD

3d

heartw
all

histogram

M
C
1

N
W

1
N
W

2
G
.M

ean

In
c
re

a
s
e

 i
n

 I
P

C

44,45,45,75,74 92

Shared-NoOpt
Shared-OWF

Shared-OWF-Reorder

Shared-OWF-PostDom
Shared-OWF-OPT

Figure 3.10: Performance Analysis of Optimizations

-5%

0%

5%

10%

15%

20%

25%

backprop

D
C
T1

D
C
T2

D
C
T3

D
C
T4

N
Q
U

SR
AD

1

SR
AD

2

FD
TD

3d

heartw
all

histogram

M
C
1

N
W

1
N
W

2
G
.M

ean

R
e

d
u

c
ti
o

n
 i
n

 S
im

u
la

ti
o

n
 C

y
c
le

s 42% 48%

Shared-OWF-OPT

Figure 3.11: Comparing the Simulation Cycles

insertion of relssp instruction.

3.4.1.5 Reduction in Simulation Cycles

In Figure 3.11 we observe a maximum reduction of 47.8% and an average reduction of

15.42% in the number of simulation cycles for Shared-OWF-OPT when compared to

Unshared-LRR. Recall that Shared-OWF-OPT causes applications to execute more

number of instructions (Table 3.5). These extra instructions are also counted while

computing the simulation cycles for Shared-OWF-OPT.

70 Improving Scratchpad Sharing with Compiler Optimizations

0%

20%

40%

60%

80%

100%

N
oO

pt
M

inim
ize

P
ostD

om
O

P
T

N
oO

pt
M

inim
ize

P
ostD

om
O

P
T

N
oO

pt
M

inim
ize

P
ostD

om
O

P
T

N
oO

pt
M

inim
ize

P
ostD

om
O

P
T

N
oO

pt
M

inim
ize

P
ostD

om
O

P
T

N
oO

pt
M

inim
ize

P
ostD

om
O

P
T

N
oO

pt
M

inim
ize

P
ostD

om
O

P
T

N
oO

pt
M

inim
ize

P
ostD

om
O

P
T

N
oO

pt
M

inim
ize

P
ostD

om
O

P
T

N
oO

pt
M

inim
ize

P
ostD

om
O

P
T

N
oO

pt
M

inim
ize

P
ostD

om
O

P
T

N
oO

pt
M

inim
ize

P
ostD

om
O

P
T

N
oO

pt
M

inim
ize

P
ostD

om
O

P
T

N
oO

pt
M

inim
ize

P
ostD

om
O

P
T

%
g

e
 o

f
S

im
u

la
ti
o

n
 C

y
c
le

s

Unshared Scratchpad Shared Scratchpad

NW2NW1MC1histogramheartwallFDTD3dSRAD2SRAD1NQUDCT4DCT3DCT2DCT1backprop

Figure 3.12: Progress of Shared Thread Blocks

3.4.1.6 Progress of Shared Thread Blocks

Figure 3.12 shows the effect of compiler optimizations by analyzing the progress of

shared thread blocks through shared and unshared scratchpad regions. In the figure,

NoOpt denotes the default scratchpad sharing when no optimizations are applied

on an input kernel. Minimize denotes the scratchpad sharing which executes an

input kernel having minimum access to shared scratchpad region. PostDom and

OPT use our modified scratchpad sharing approach that execute an input kernel

with additional relssp instructions placed at post dominator and optimal places

(Section 3.2.3) respectively. In the figure, we show the percentage of simulation

cycles spent in unshared scratchpad region (before acquiring shared scratchpad),

shared scratchpad region, and unshared scratchpad region again (after releasing the

shared scratchpad) respectively. We observe that shared thread blocks in all the

applications access unshared scratchpad region before they start accessing shared

scratchpad memory. Hence all the shared thread blocks can make some progress

without wait. This progress is the main reason for the improvements seen with

scratchpad sharing approach.

An interesting case to consider in Figure 3.12 is the application heartwall, where

none of the shared thread blocks accesses shared scratchpad memory. However, note

that this is run-time behavior, specific to the particular inputs used for the bench-

mark. In this case, there is no scope for compiler optimizations to further improve

3.4 Experimental Evaluation 71

-5%

0%

5%

10%

15%

20%

25%

30%

35%

backprop

D
C
T1

D
C
T2

D
C
T3

D
C
T4

N
Q
U

SR
AD

1

SR
AD

2

FD
TD

3d

heartw
all

histogram

M
C
1

N
W

1
N
W

2
G
.M

ean

In
c
re

a
s
e

 i
n

 I
P

C

72, 74 92, 92

Unshared-GTO vs Shared-OWF-OPT
Unshared-two-level vs Shared-OWF-OPT

Figure 3.13: Improvement in IPC for Shared-OWF-OPT w.r.t. Baseline Having (a)
GTO, (b) Two-Level Scheduler

the progress of shared thread blocks. Manual inspection of the code reveals that

even though shared scratchpad memory is not accessed for the particular execution,

it is used in the program code under an if-then-else condition. Thus it is not possible

to eliminate the shared scratchpad at compile-time.

It is clear from the figure that Minimize does not affect DCT1, DCT2, DCT3,

DCT4, FDTD3d, histogram applications because the kernels in these applications

declare single scratchpad variable. For the remaining applications, Minimize has

same effect as that of NoOpt, because the default input PTX kernel already accesses

the shared scratchpad variables such that access to shared scratchpad is minimum.

We also observe that PostDom and OPT approaches improve only those applications

that spend considerable simulation cycles in unshared scratchpad region after last

access to shared scratchpad region. We also observe that in NoOpt and Minimize

approaches owner thread blocks keep shared scratchpad locked till the end of their

execution. Hence, non-owner thread blocks wait for lock in the unshared scratchpad

region for longer periods. However, with PostDom and AllOpt approaches, owner

thread blocks release the shared scratchpad memory early using the relssp instruc-

tion, hence the non-owner thread blocks can start accessing the shared scratchpad

early, minimizing the waiting time. Thus we see an overall performance improve-

ment.

72 Improving Scratchpad Sharing with Compiler Optimizations

 0

 100

 200

 300

 400

 500

 600

backprop

D
C
T1

D
C
T2

D
C
T3

D
C
T4

N
Q
U

SR
AD

1

SR
AD

2

FD
TD

3d

heartw
all

histogram

M
C
1

N
W

1
N
W

2

In
s
tr

u
c
ti
o

n
s
 P

e
r

C
y
c
le

 (
IP

C
)

Unshared-LRR-32K Shared-OWF-OPT-16K

Figure 3.14: Comparison with Unshared-LRR that Uses Twice the Scratchpad Mem-
ory

3.4.1.7 Comparison with Different Schedulers

Figure 3.13 shows the effect of using different scheduling policies. The performance

of Shared-OWF-OPT approach is compared with the baseline unshared implementa-

tion that uses greedy then old (GTO) and two-level scheduling policies respectively.

We observe that Shared-OWF-OPT approach shows an average improvement of

17.73% and 18.08% with respect to unshared GTO and two-level scheduling policies

respectively. The application FDTD3d degrade with our approach when compared

to the baseline with either GTO scheduling or two-level scheduling since it has more

number of L1 and L2 cache misses with sharing. The application histogram degrades

with sharing when compared to the baseline with GTO scheduling because of more

number of L1 misses. However histogram with sharing performs better than the

baseline with two-level policy.

3.4.1.8 Resource Savings

Figure 3.14 compares the IPC of Shared-OWF-OPT with Unshared-LRR that uses

twice the amount of scratchpad memory on GPU. We observe that DCT3, DCT4,

NQU, and heartwall show improvement with Shared-OWF-OPT over Unshared-LRR

even with half the scratchpad memory. This is because sharing helps in increasing

the TLP by launching additional thread blocks in each SM. The applications DCT1,

DCT2, SRAD1, SRAD2, and MC1 applications perform comparable with both the

3.4 Experimental Evaluation 73

Table 3.6: Other GPGPU-Sim Configurations

Resource/Core Configuration
#1 #2

Scratchpad Memory 48KB 64KB
Max Thread Blocks 16 32
Max Threads 2048 2048
Number of SMs 14 14

Table 3.7: Additional Benchmarks that are Limited by Scratchpad Memory

Benchmark Application Kernel #Scratchpad Scratchpad Block
Variables Size (Bytes) Size

Benchmarks for 48KB / 64KB Scratchpad Memory
1. RODINIA backprop bpnn layerforward CUDA 2 9408 256
2. CUDA-SDK DCT1 CUDAkernel2DCT 1 8320 128
3. CUDA-SDK DCT2 CUDAkernel2IDCT 1 8320 128
4. GPGPU-SIM NQU solve nqueen cuda kernel 5 10496 64
5. CUDA-SDK histogram histogram256Kernel 1 9216 192
6. CUDA-SDK marchingCubes (MC2) generateTriangles 2 13824 48
7. RODINIA NW1 needle cuda shared 1 2 8452 32
8. RODINIA NW2 needle cuda shared 2 2 8452 32

Benchmarks for 48KB Scratchpad Memory
9. CUDA-SDK FDTD3d FiniteDifferencesKernel 1 3840 128

10. RODINIA heartwall kernel 8 11872 128
11. CUDA-SDK marchingCubes (MC1) generateTriangles 2 9216 32

approaches. For the remaining applications, Unshared-LRR with double scratchpad

memory performs better than sharing since more number of thread blocks are able

to make progress with the former.

3.4.1.9 Performance Comparison with Other Configurations

To further verify the effectiveness of scratchpad sharing and compiler optimizations,

we evaluated them on two GPU configurations that use scratchpad memory of size

48KB and 64KB per SM (Table 3.6). The scratchpad memory and thread block

parameters are similar to that of NVIDIA’s Kepler and Maxwell architectures re-

spectively. The benchmarks that are used for the evaluation are shown in Table 3.7.

The changes in Table 3.7 with respect to those in Table 3.3 are:

• Kernel scratchpad memory size for DCT1 and DCT2 is increased from 2112 to

8320. This change ensures that applications are limited by scratchpad memory

74 Improving Scratchpad Sharing with Compiler Optimizations

 0

 150

 300

 450

 600

 750

backprop

D
C
T1

D
C
T2

N
Q
U

FD
TD

3d

heartw
all

histogram

M
C
1

M
C
2

N
W

1
N
W

2

In
s
tr

u
c
ti
o
n
s
 P

e
r

C
y
c
le

Unshared-LRR-48K
Shared-OWF-OPT-48K

Unshared-LRR-64K
Shared-OWF-OPT-64K

Figure 3.15: Performance Analysis for Various Configurations

for both the configurations.

• A new application, MC2, is created based on MC1 —the only difference being

that kernel scratchpad memory size is increased to 13824, this is to enable

scratchpad sharing for Configuration-2.

• The applications DCT3, DCT4, SRAD1, and SRAD2 are dropped as scratch-

pad sharing could not be made applicable even by increasing the kernel scratch-

pad memory size. These applications are limited either by the number of

thread blocks or by the number of threads.

Note that scratchpad sharing is applicable for MC1, FDTD3d, and heartwall

only with Configuration-1, but not with Configuration-2 (Table 3.6).

Figure 3.15 shows the performance comparison of Shared-OWF-OPT with the

two baseline configurations in terms of number of instructions executed per cycle.

In the figure, we use Unshared-LRR-48K to denote the baseline approach that uses

48KB scratchpad memory (according to Configuration-1) and Shared-OWF-OPT-

48K to denote the scratchpad sharing approach (with all optimizations) that use

48KB scratchpad memory. The notations Unshared-LRR-64K and Shared-OWF-

OPT-64K, which use 64KB scratchpad memory configuration, are defined analo-

gously.

We observe that with Shared-OWF-OPT-48K, all the applications except FDTD3d

and DCT2 show performance improvement when compared to Unshared-LRR-48.

Similarly with Shared-OWF-OPT-64K, all the applications perform better when

3.4 Experimental Evaluation 75

Table 3.8: Benchmarks Used for Comparison with Shared Memory Multiplexing [96]

Application Kernel #Scratchpad Scratchpad Block
Variables Size (Bytes) Size

Matrix Vector Multiplication (MV) mv shared 1 4224 32
Fast Fourier Transform (FFT) kfft 1 8704 64
MarchingCubes (MC) generateTriangles 2 9216 32
ScalarProd (SP) scalarProdGPU 1 4114 64
Histogram (HG) histogram256 1 7168 32
Convolution (CV) convolutionColumnsKernel 1 8256 128

compared to Unshared-LRR-64K. Consider the applications backprop, DCT1, his-

togram, MC2, and NQU. These applications with Shared-OWF-OPT-48K perform

better even when compared to Unshared-LRR-64K. Also, these applications, when

used with Shared-OWF-OPT-64K, perform better than Unshared-LRR-64K as well.

NW1 and NW2 show improvement with scratchpad sharing when compared to their

respective baseline approaches. Applications heartwall and MC1, where scratchpad

sharing is applicable only with Configuration-1 (Table 3.6), show improvement when

compared to Unshared-LRR-48K. For DCT2, increasing the amount of scratch-

pad memory from 48KB to 64KB per SM does not improve the performance of

Unshared-LRR configuration since it increases number of stall cycles in the SM.

Hence increase in the number of thread blocks for Shared-OWF-OPT-48K does not

improve its performance w.r.t Unshared-LRR-48K. However, Shared-OWF-OPT-

48K performs better than Shared-OWF-OPT-64K because Shared-OWF-OPT-48K

has lesser number of thread blocks that make more progress, hence reducing resource

contention. FDTD3d does not show improvement with scratchpad sharing due to

increase in the stall cycles with our approach. To summarize, scratchpad sharing

with compiler optimizations helps in improving the performance of the applications

even with increase in the size of the scratchpad memory per SM.

3.4.1.10 Performance Comparison with Shared Memory Multiplexing [96]

Figure 3.16 compares the performance of Shared-OWF-OPT with the software

approaches proposed by Yang et al. [96] in terms of number of simulation cycles.

We use their benchmarks (Table 3.8), and simulate them on the GPU configuration

shown in Table 3.2. In the figure, VTB, VTB PIPE, and CO VTB denote the

76 Improving Scratchpad Sharing with Compiler Optimizations

 0
 2e+06
 4e+06
 6e+06
 8e+06
 1e+07

 1.2e+07
 1.4e+07
 1.6e+07

M
V

FFT
M

C
SP H

G
C
V

S
im

u
la

ti
o
n
 C

y
c
le

s

Unshared-LRR
Shared-OWF-OPT

VTB_PIPE
Shared-VTB_PIPE-OWF-OPT

VTB
Shared-VTB-OWF-OPT

CO_VTB
Shared-CO_VTB-OWF-OPT

Figure 3.16: Performance Comparison with Other Approaches (Lower Value is Bet-
ter)

compiler optimizations proposed by Yang et al. [96]1. Similarly, we use Shared-

VTB-OWF-OPT, Shared-VTB PIPE-OWF-OPT, and Shared-CO VTB-OWF-OPT

to measure performance of scratchpad sharing on the applications that are optimized

with VTB, VTB PIPE, and CO VTB respectively.

In the experiments we observe a change in the number of executed instruc-

tions for VTB, VTB PIPE, and CO VTB approaches because they require mod-

ifications to the benchmarks. In Figure 3.16, application MC performs better

(spends fewer simulation cycles) with Shared-OWF-OPT than with Unshared-LLR,

VTB, VTB PIPE, and CO VTB approaches. Interestingly, applying Shared-OWF-

OPT on top of VTB, VTB PIPE, or CO VTB improves the performance further.

Similarly, FFT shows improvement with Shared-OWF-OPT when compared to

Unshared-LRR and VTB PIPE. In this case also Shared-VTB PIPE-OWF-OPT

outperforms VTB PIPE. In contrast, for the application HG, sharing does not im-

pact the performance, even on the top of VTB and VTB PIPE optimizations. This

is because the additional thread blocks launched do not make much progress before

they start accessing shared scratchpad. For the same reason, scratchpad sharing does

not impact on MV. The applications CV and SP perform better with VTB PIPE

than with Shared-OWF-OPT. However, the performance is further improved when

scratchpad sharing is combined with VTB and VTB PIPE approaches. It can be

1Note that, as described in [96], CO VTB is suitable only for few workloads (i.e., MC and
HG). Also, for FFT, we do not compare VTB with VTB PIPE because VTB combines 4 thread
blocks whereas VTB PIPE combines 2 thread blocks in their implementation.

3.4 Experimental Evaluation 77

 0

 150

 300

 450

 600

 750

 900

BFS
b+tree

D
C
T5

gaussian

N
N

In
s
tr

u
c
ti
o
n
s
 P

e
r

C
y
c
le

 (
IP

C
)

Unshared-LRR

Shared-LRR

Shared-LRR-OPT

Unshared-GTO

Shared-GTO

Shared-GTO-OPT

Shared-OWF

Shared-OWF-OPT

Figure 3.17: IPC Comparison of Set-3 Benchmarks

concluded from these experiments that scratchpad sharing and shared memory mul-

tiplexing approaches compliment each other well, and most applications show the

best performance when the two approaches are combined.

3.4.2 Analyzing Benchmarks that are not Limited by Scratch-

pad Memory

Performance analysis of Set-3 benchmarks is shown in the Figure 3.17. Recall that

the number of thread blocks launched by these applications is not limited by the

scratchpad memory. We observe that the performance of the applications with

Unshared-LRR, Shared-LRR, and Shared-LRR-OPT is exactly the same. For Set-3

applications all thread blocks are launched in unsharing mode. Hence Shared-LRR

behaves exactly same as Unshared-LRR. Since these applications do not use any

shared scratchpad memory, our compiler optimizations do not insert relssp instruc-

tion in their PTX code. Hence the number of instructions executed by the Shared-

LRR-OPT approach is same as that of Shared-LRR. Similarly, we see that Unshared-

GTO, Shared-GTO, and Shared-GTO-OPT behave exactly the same. However,

with OWF optimization, Shared-OWF and Shared-OWF-OPT is comparable to the

Unshared-GTO because OWF optimization arranges the resident warps according

to the owner. Since all the the thread blocks own their scratchpad memory, they

are sorted according to the dynamic warp id. Hence they perform comparable to

78 Improving Scratchpad Sharing with Compiler Optimizations

Unshared-GTO. The performances with Shared-OWF and Shared-OWF-OPT are

the same because the compiler optimizations do not insert any relssp instruction.

3.5 Summary

In this chapter, we propose compiler optimizations to improve the availability of

shared scratchpad memory. Experiments with various benchmarks help us conclude

that if the number of resident thread blocks launched by an application is limited

by scratchpad (Table 3.3), scratchpad sharing (with the compiler optimizations)

improves the performance. On the other hand, for other applications where the

number of thread blocks is not limited by scratchpad (Table 3.4), the hardware and

software changes do not negatively impact the run-time.

Chapter 4

Optimizations for Reducing

Register File Leakage Energy

4.1 Introduction

GPUs maintain a large register file in each of their streaming multiprocessor (SM) to

improve the TLP. They allow a large number of resident threads [4] in each SM, and

the resident threads can store their thread context in the register file, which facili-

tates faster context switching of the threads. The threads that are launched in each

SM are grouped into sets of 32 threads (warps), and they execute the instructions

in a single instruction, multiple threaded (SIMT) manner.

To keep improving the TLP of the GPUs, GPU architects increase the maximum

number of resident threads and register file sizes in every generation. However,

increase in the register file size comes at a price. Earlier studies [38, 59] show that

register files in the GPU consume a significant amount of power (about 15% of

the total power). With decrease in the feature size of semiconductor devices, the

leakage power has become a crucial factor for the manufacturing process [45, 50].

Also, Lim et al. [65] has shown that the leakage power dissipated by the GPUs

is more than 50% of the total power for several benchmark applications. We also

observe that registers in the GPU continue to dissipate leakage power throughout

the entire execution of its warp even when they are not accessed by the warp.

80 Optimizations for Reducing Register File Leakage Energy

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 11

 0 7
5
0

 1
5
0
0

 2
2
5
0

 3
0
0
0

 3
7
5
0

 4
5
0
0

 5
2
5
0

 6
0
0
0

 6
7
5
0

 7
5
0
0

 8
2
5
0

 9
0
0
0

 9
7
5
0

 1
0
5
0
0

 1
1
2
5
0

 1
2
0
0
0

 1
2
7
5
0

 1
3
5
0
0

 1
4
2
5
0

 1
5
0
0
0

R
e

g
is

te
r

N
u

m
b

e
r

Simulation Cycle

Each data point shows the access of a register (Y-axis) during a cycle (X-axis).

Figure 4.1: Register Access Pattern for MUM [14]

4.1.1 Opportunities to Reduce Register Leakage Energy

To understand the severity of leakage power dissipation by register file, consider

Figure 4.1 which shows the access patterns of some registers of warp 0 during the

execution of MUM application [14]. We use the access patterns of the registers of a

single warp as a representative since all the warps of a kernel typically show similar

behavior during execution [9]. We make the following observations:

• Register 10 is accessed very infrequently—it is accessed for only 3 cycles out

of 15000 cycles shown in the figure. In fact, it is accessed for only 7 cycles

during the complete execution (life time) of the warp (29614 cycles).

• Register 1 is the most frequently accessed register during the warp execution.

Even it is accessed for only 330 cycles (∼ 1.11%) during the life time of the

warp.

4.1 Introduction 81

0.0%

0.2%

0.4%

0.6%

0.8%

1.0%

1.2%

1.4%

1.6%

BP BFS1

BFS2

BS LM
D

LIB
LPS

M
C
1
M

C
2
M

R
1
M

R
2
M

U
M
N
N
1

N
N
2

N
N
3

N
N
4

PF SP SG
EM

M

SPM
V

VA

S
im

u
la

ti
o

n
 C

y
c
le

s

Figure 4.2: Percentage of Simulation Cycles Spent by a Register (Averaged Over all
the Registers)

This shows that registers are accessed for a very short duration during the warp

life time. However, they continue to dissipate leakage power for the entire life time

of the warp. Figure 4.2 shows that the behavior is not specific to MUM, but is seen

across a wide range of applications. The figure shows the percentage of simulation

cycles spent in register accesses (averaged over all the registers in all the warps) for

several applications. We observe that registers on an average spend < 2% of the

simulation cycles during the warp execution while leaking power during the entire

execution.

One solution to reduce the leakage power of the registers is by putting the regis-

ters into low power states [45]. Several studies use different notations for denoting

the power state of a register. This thesis uses the following notations.

• ON: The default power state, which does not achieve any power savings.

• SLEEP (Drowsy): Drowsy [8, 22] and SLEEP [62] states refer to the same

low power data preserving states. This thesis uses the term SLEEP.

• OFF: It denotes the low power data destroying state, however, it saves more

power when compared to SLEEP state.

Warped Register File [8] reduces the leakage power of register file by putting

the register into SLEEP state immediately after the registers of an instruction are

82 Optimizations for Reducing Register File Leakage Energy

accessed. However, this can have run-time overhead whenever there are frequent

wake up signals to the sleeping register. Consider Figure 4.1 again:

• Putting register 10 to SLEEP state immediately after its accesses saves sig-

nificant power because there are gaps of several thousands of cycles between

consecutive accesses.

• In contrast, register 1 is accessed very frequently. If it is put to SLEEP after

every access, it will have a high overhead of wake up signals.

• The access pattern of register 7 changes during the warp execution. It is

accessed frequently for some duration (for example, between cycles 10500–

11250), and not accessed frequently for other duration (between cycles 3000–

7500). To optimize energy as well as run-time, the register needs to be kept

ON whenever it is frequently accessed, and put to SLEEP otherwise.

• The last access to register 8 is at cycle 1602. The register can be turned OFF

after its last access to save more power.

To summarize, the knowledge of registers’ access patterns is required to improve

energy efficiency without impacting the run-time adversely.

4.1.2 Our Solution: GReEneR

To reduce the leakage energy of the register file, we have developed GReEneR for a

given assembly program1. GReEneR uses a compile-time analysis to determine the

power state of the registers (OFF, SLEEP, or ON) for each instruction by estimating

the register usage information. It then transforms the input assembly program

by encoding the power state information at each instruction to make it energy

efficient. The static analysis makes safe approximations while computing power

state of the registers, therefore, the choice of the state can be suboptimal at run-

time. Hence, to improve the accuracy and energy efficiency, GReEneR provides a

1Note that the techniques [45] to reduce leakage power using low power states address the
subthreshold leakage power. Hence, in GReEneR the savings on leakage energy refer to savings
on subthreshold leakage energy.

4.2 GReEneR 83

run-time optimization that dynamically corrects the power state of registers of each

instruction.

To summarize, this chapter describes following contributions of the thesis.

1. We introduce a new instruction format that supports the power states for the

instruction registers (Section 4.2.2).

2. We propose a compile-time analysis that determines the power state of the

registers at each program point and transforms an input assembly language

into a power optimized assembly language (Section 4.2.1 and 4.2.2).

3. We give a run-time optimization to reduce the penalty of suboptimal (but

safe) choices made by static analysis (Section 4.2.3).

4. We implemented the proposed compile-time and run-time optimizations using

GPGPU-Sim simulator [3]. We integrated GPUWattch [59] with CACT-P [63]

version to enable power saving mechanism (Section 4.3).

5. We evaluated our implementation on wide range of kernels from different

benchmark suites: CUDASDK [2], GPGPU-SIM [14], Parboil [7], and Ro-

dinia [19]. We are able to reduce the register leakage energy by an average of

46.96% and maximum of 57.57% (Section 4.3).

The rest of the chapter is organized as follows. Section 4.2 describes the details of

GReEneR. Section 4.3 shows the experimental results, and Section 4.4 summarizes

the chapter.

4.2 GReEneR

To understand the working of GReEneR, we need to understand the different

access patterns of a register and their effect on the wake up penalty incurred. Let W

(threshold) denotes the minimum number of program instructions (not the number

of clock cycles) that are required to offset the wake-up penalty incurred when a

register state is switched from OFF or SLEEP state to ON state. Consider a program

that accesses some register R in a statement S during execution. The future accesses

of R in this execution govern its power state. The following scenarios exist:

84 Optimizations for Reducing Register File Leakage Energy

1. The next access (either read or write) to R is by an instruction S ′ and there

are no more than W instructions between S and S ′. In this case, since the

two accesses to R are very close, it should be kept ON to avoid any wake-up

penalty associated with SLEEP or OFF state.

2. The next access to R is a read access by an instruction S ′ and there are more

than W instructions between S and S ′. In this case, since the value stored in

R is used by S ′, we can not switch R to OFF state as it will cause the loss of

its value. However, we can put R in SLEEP state.

3. The next access to R is a write access by an instruction S ′ and there are more

than W instructions between S and S ′. In this case, since the value stored in

R is being overwritten by S ′, we can put R in OFF state.

4. There is no further access to R in the program. In this case also, register R

can be safely turned OFF.

We now describe the compiler analysis used by GReEneR to capture these scenar-

ios.

4.2.1 Compiler Analysis

To compute power state of registers at each instruction, we perform compiler anal-

ysis at the instruction level. Determining the power state of each register requires

knowing the life time of registers as well as the distance between the consecutive

accesses to the registers. We use the following notations.

• IN(S) denotes the program point before the instruction S. OUT(S) denotes

the program point after the instruction S.

• SUCC(S) denotes the set of successors of the instruction S. An instruction I

is said to be successor of S if the control may transfer to I after executing the

instruction S.

• isLive(π,R) is true if there is some path from π to Exit that contains a use of

R not preceded by its definition.

4.2 GReEneR 85

• Dist(π,R) denotes the distance in terms of number of instructions from pro-

gram point π till the next access to R. Dist(π,R) is set to ∞ when it exceeds

the threshold W .

• SleepOff(π,R) is true if the register R can be put into SLEEP or OFF state

at program point π.

• Power(π,R) denotes the power state of the register R at program point π.

The liveness information of each register, isLive(π,R), can be computed using tra-

ditional liveness analysis [47]. The data flow equations to compute the Dist(IN(S), R)

and Dist(OUT(S), R) are as follows:

Dist(IN(S), R) =

1, if S accesses R

INC(Dist(OUT(S), R)), otherwise

INC(x) =

∞, if x is W or ∞

x+ 1, otherwise

Dist(OUT(S), R) =

∞, if S is Exit

max
SS∈SUCC(S)

Dist(IN(SS), R), otherwise

Note that INC(x) is a saturating increment operator. Since our analysis aims to

reduce the power consumption, we compute Dist(OUT(S), R) as the maximum value

of Dist(IN(SS), R) over the successors SS of S. A register R can potentially be put

into SLEEP or OFF state at a program point π if it is not accessed within the

distance window W on some path:

SleepOff(π,R) = (Dist(π,R) ==∞)

The power state of each register at each program point can be computed accord-

ing to Table 4.1.

4.2.2 Encoding Power States

The power state (Power State) of a register can be one of the three states: OFF,

SLEEP, or ON. Thus, it requires two bits to represent Power State of one register.

86 Optimizations for Reducing Register File Leakage Energy

Table 4.1: Computing Power State of a Register R at a Program Point π

isLive(π,R) SleepOff(π,R) Power(π,R)

true true SLEEP
true false ON
false true OFF
false false ON

Since the power state can change after every instruction at run-time, we need to

encode the Power State of the operand registers of an instruction in the instruction

itself.

PTXPlus instructions [3] can support up to 4 source and 4 destination registers.

Encoding Power State of all the registers will require 16 bits. We observed that in

our benchmarks, most instructions use only up to 2 source registers and 1 destination

register. Therefore, to reduce the number of bits required to encode Power State in

each instruction, we encode information only for 2 source registers and 1 destination

register. For instructions having more registers, Power State of the remaining reg-

isters is assumed to be SLEEP to enable power saving. The modified instructions

have the format:

<Opcode> <Options> <Operand List> <Power State List >

Note that Power State encoded for a register R for an instruction S is given by

Power(OUT(S), R).

Example 4.2.1. Figure 4.3(a) shows a snippet of power optimized PTXPlus code,

which is generated for SP benchmark using a threshold value (W) 7. The control

flow graph (CFG) corresponding to the snippet is shown in Figure 4.3(b). Note that

the CFG is shown with respect to traditional basic block level to show it in compact.

In Figure 4.3(a), explicit branch addresses have been replaced by block labels for ease

of understanding. The shaded text in the instructions indicates the power states

inserted by GReEneR.

The instruction at Line-1 uses 2 source registers (r8, r0) and 2 destination regis-

ters (p2, o127). As discussed, our analysis inserts the power states only for 2 source

registers and 1 destination register. In this case, the power states ON, SLEEP,

ON correspond to the registers p2, r8, and r0 respectively. The power state of o127

4.2 GReEneR 87

1 B4:set.le.s32.s32 $p2/$o127, $r8, $r0, ON, SLEEP, ON;

2 ssy 0x00000110;

3 mov.u32 $r1, $r0, SLEEP, ON;

4 $p2.ne bra B8;

5 B5:shl.u32 $r10, $r0, 0x00000002, ON, SLEEP;

6 mov.u32 $r12, $r124, ON, SLEEP;

7 add.half.u32 $r11, s[0x0018], $r10, ON, ON;

8 add.half.u32 $r10, s[0x0020], $r10, ON, ON;

9 B6:ld.global.u32 $r14, [$r11], ON;

10 ld.global.u32 $r13, [$r10], ON;

11 mad.f32 $r12, $r14, $r13, $r12, SLEEP, OFF, OFF;

12 add.u32 $r1, $r1, 0x00000400, ON, ON;

13 set.gt.s32.s32 $p2/$o127, $r8, $r1, ON, SLEEP, SLEEP;

14 add.u32 $r10, $r10, 0x00001000, SLEEP, SLEEP;

15 add.u32 $r11, $r11, 0x00001000, SLEEP, SLEEP;

16 $p2.ne bra B6;

17 B7:bra B9;

18 B8:mov.u32 $r12, $r124, ON, SLEEP;

19 B9:add.u32 $r0, $r0, $r5, ON, ON, SLEEP;

20 shl.b32 $ofs1, $r9, 0x0, ON, ON;

21 set.le.s32.s32 $p2/$o127, $r0, $r6, ON, SLEEP, SLEEP;

22 mov.u32 s[$ofs1+0x0000], $r12, OFF;

23 add.u32 $r9, $r9, $r7, SLEEP, SLEEP, SLEEP;

24 $p2.ne bra B4;

B4

B8

B9

B6

B5

B7

(a) Power Optimized PTXPlus. (b) CFG

The shaded text in part (a) denotes the power states inserted by GReEneR

Figure 4.3: A Snippet of the Program and its CFG for SP Benchmark [2]

register (the fourth register in the instruction) is set to SLEEP state after accessing

the register.

For register r0 of the instruction, the next access to the register occurs at Line-

3 (at distance 2, less than the threshold value 7). Hence, the compiler inserts the

power state as ON. Register p2 is also kept in ON state for a similar reason. For

register r8 of the same instruction, the next access occurs along two paths. One of

the paths has a use at a distance of 8 (along B5 at Line-13, > 7), and the other

has a definition after B9 (not shown in the figure). GReEneR keeps the register

in SLEEP state since there is a path along which the next access happens after a

distance > 7.

Finally, consider register r13 accessed by the instruction at Line-11. There is no

further access of r13 along any path in the program. Therefore, the power state of

r13 is set to OFF to save power.

At run-time, power state of the source registers are set after the register contents

88 Optimizations for Reducing Register File Leakage Energy

S0 r0 = . . .

S1

..

.

S9 . . . = r0

S10

S11 . . . = r0

S12

9 Instructions

Distance Threshold = 7
Dist(OUT(S0), r0) = ∞

SleepOff(OUT(S0), r0) = true
isLive(OUT(S0), r0) = true
Power(OUT(S0), r0) = SLEEP

(a) Computing Distance at Branch Divergence

S11 :

S10 :

S0 : F D IS EX WB

F D IS EX WB

F D IS EX WB

SLEEP r0

ON r0

(b) Correcting Power State at Run-time. The pipeline phases are: Fetch (F), Decode (D),
Issue (IS), Execute (EX), and Writeback (WB)

Figure 4.4: Example for Run-time Optimization

4.2 GReEneR 89

have been read, i.e., in the read operands phase in the GPU pipeline, and the

power state of the destination registers are set after the register contents have been

written, i.e., in the write back stage of the pipeline. The details of the hardware

implementation are discussed in Section 4.2.4.

4.2.3 Run-time Optimization

Recall that the compiler analysis described in Section 4.2.1 computes Dist(OUT(S), R)

as the maximum distance value over all successors when OUT(S) is a branch point.

This decision increases the chances of power savings, but it can be suboptimal at

run-time as shown by the following example.

Example 4.2.2. Consider the CFG in Figure 4.4(a) for a hypothetical benchmark.

Assume the threshold value of 7 for GReEneR. Instruction S0 defines a register

r0. The next access to r0 occurs along two paths: the path along S10 has a use

at a distance of 2, and the other (along S1) has a use in S9 at a distance of ∞
(>7). GReEneR computes Dist(OUT(S0), r0) as∞, the maximum of the distances

along the successors. Further, the state Power(OUT(S0), r0) is computed as SLEEP.

When the program executes along the path along S1, power is saved. However, if the

program executes the path along S10, then the register needs an immediate wake up,

causing an overhead.

GReEneR’s compile-time decision can be corrected at run-time by looking at

near future accesses of a register in the pipeline. The hardware is modified to check

in the pipeline if any instruction from the same warp has been decoded that accesses

a register whose power state is being changed to SLEEP or OFF (Section 4.2.4).

If so, then the register power is kept ON. This avoids the wake up latencies for

instructions that access the same register within a short duration, thereby avoiding

the performance penalty.

Example 4.2.3. Figure 4.4(b) shows a possible execution sequence of a program

whose CFG is shown in Figure 4.4(a). The instruction S0 writes to register r0.

After writing the register value in write back stage (WB), the register needs to be

put into SLEEP state. Assume that the program takes the path along S10 and decodes

the instruction S11 before the write back stage of S0. Our run-time optimization

90 Optimizations for Reducing Register File Leakage Energy

Fetch Issue

Warp Scheduler

Execute Writeback

IBuffer Wake Up Exec Unit
Ready?

Read
OperandsRegisters

Register

Power

Try Another Warp

States

Power
States

Data

Ordered Warps

Power States

Yes

Failed No

Warp

Data

(2) (3)

Scoreboard

Decode

(1)

FileLookup

Table

(PC, Wid, Regs)

(PC, Wid, Regs)

(PC, Wid, Regs)

(6)

(4)

(5)

Figure 4.5: Modifications to GPU Pipeline

detects the future access to r0 by S11, and keeps the register in ON state instead

of putting it into SLEEP state to avoid additional wake up latencies. On the other

hand, if the program takes the path along S1, then the instruction present in the S9

would appear much later in the pipeline (after WB stage of S0). The register r0 will

be set to SLEEP state.

4.2.4 Hardware Support

Figure 4.5 shows the modified pipeline of GPU Architecture that supports our pro-

posed ideas, with the modified components shaded and labeled. The changes are

described below and the corresponding overheads are quantified in Section 4.3.5.

1. To support the new instruction format (Section 4.2.2), we modify the decode

unit to extract the power states of the registers from the instruction (Label

(1) in Figure 4.5).

2. The scoreboard unit (Label (2)) is modified to track RAR (Read After Read)

and WAR (Write after Read) dependencies in addition to RAW (Read After

Write) and WAW (Write after Write) dependencies. This is done by adding

instruction’s source registers in the scoreboard table. It is because an instruc-

tion can change the power state of a register to SLEEP or OFF after reading

4.2 GReEneR 91

the registers. Hence, the subsequent instructions that read/write the same

register need to wait until the power state is modified.

3. The registers in SLEEP or OFF state are woken up by sending a wake up

signal to the register file (Label (3)). A warp is considered ready for issuing

its current instruction only when all its operand registers are in ON state.

4. The read operands phase (Label (4)) is modified (a) to set the power state

of source registers after they have been read and (b) to release the source

registers of the instruction which were reserved by the scoreboard unit.

5. The write back stage (Label (5)) includes the logic to set the power state of

the destination registers after the registers are written.

6. The run-time optimization is implemented by adding a lookup table (Label

(6)) to keep track of the registers accessed by an instruction. For an instruction

having program counter PC and warp id Wid, the lookup table is indexed by

Wid. When an instruction is decoded, the decode unit inserts the instruction’s

operand registers into the lookup table. When a warp (Wid) needs to set the

power state of a register (R) of an instruction (PC) to SLEEP or OFF, it

searches the lookup table for another instruction (a different PC) with the

same Wid and accessing R. If a match is found, then the power state of R is

kept ON, otherwise, it is changed. After an instruction completes its writeback

stage, the corresponding entry is removed from the lookup table.

Each entry for a warp in the look up table stores instruction’s PC, and its register

numbers. The number of entries required for each warp is determined by the pipeline

depth, which can be large. However, in practice, the number of entries required per

each warp is less, and experimentally we found that the average number of entries

per warp is less than 2. If an SM allows maximum W resident warps, stores w

entries per each warp, supports r operand registers for each instruction, and allows

maximum R registers per each thread, then the size of look up table (in bits) is

W ∗ w ∗ (sizeof(PC) + (log2(R) ∗ r)).

92 Optimizations for Reducing Register File Leakage Energy

Table 4.2: GPGPU-Sim Configuration

Resource Configuration
Architecture NVIDIA Tesla K20x
Number of SMs 14
Shader Core Clock 732 MHz
Technology Node 22nm
Register File Size per SM 256KB
Number of Register Banks 32
Max Number of TBs per SM 16
Max Number of Threads per SM 2048
Warp Scheduling LRR
Number of Schedulers per SM 4

4.3 Experimental Analysis

We implemented the proposed hardware changes and compiler optimizations in

GPGPU-Sim V3.x [3]. The modified instruction format is implemented by extend-

ing the PTXParser provided by GPGPU-Sim. The GPGPU-Sim configuration used

for the experiments is shown in Table 4.2. We used GPUWattch [59] to measure the

power consumption of register file.

Note that GPUWattch internally uses CACTI [18] to measure the power dissipa-

tion that does not support leakage power saving mechanism. Therefore, we modified

GPUWattch to use CACTI-P [63] that provides power gating technique, which can

minimize the leakage power by setting the SRAM cells into low power (SLEEP or

OFF) state. It uses minimum data retention voltage so that SRAM cells can en-

ter into SLEEP state without losing their data. We chose SRAMvccmin to be the

default value (provided by CACTI-P depending on the technology node, 22nm for

this case). To put SRAM cells in OFF state, we configured SRAMvccmin to 0 V.

After running several experiments, we chose the threshold value (W) as 3, which

achieves lowest energy for maximum number of kernels. We used the latency to

wake up a register from SLEEP to ON state to be 1 cycle as reported in [63], and

the latency to wake up a register from OFF to ON state be twice (i.e., 2 cycles) [62],

except for Section 4.3.6 where we consider the effect of other values for the wake

up latencies on performance and energy consumption. We report these latency and

energy overheads in Section 4.3.5 and also include these overheads throughout our

4.3 Experimental Analysis 93

Table 4.3: Benchmarks Used for Evaluation

Sr. No. Benchmark Application Notation Kernel
1 RODINIA backprop BP bpnn adjustweights cuda
2 RODINIA bfs BFS1 Kernel
3 RODINIA bfs BFS2 Kernel2
4 CUDA-SDK Blackscholes BS BlackScholesGPU
5 GPGPU-SIM LIB LIB Pathcalc Portfolio KernelGPU
6 RODINIA lavaMD LMD kernel gpu cuda
7 GPGPU-SIM LPS LPS GPU laplace3d
8 CUDA-SDK MonteCarlo MC1 inverseCNDKernel
9 CUDA-SDK MonteCarlo MC2 MonteCarloOneBlockPerOption
10 PARBOIL mri-q MR1 ComputePhiMag GPU
11 PARBOIL mri-q MR2 ComputeQ GPU
12 GPGPU-SIM MUM MUM mummergpuKernel
13 GPGPU-SIM NN NN1 executeFirstLayer
14 GPGPU-SIM NN NN2 executeSecondLayer
15 GPGPU-SIM NN NN3 executeThirdLayer
16 GPGPU-SIM NN NN4 executeFourthLayer
17 RODINIA pathfinder PF dynproc kernel
18 PARBOIL sgemm SGEMM mysgemmNT
19 CUDA-SDK scalarProd SP scalarProdGPU
20 PARBOIL spmv SPMV spmv jds
21 CUDA-SDK vectorAdd VA VecAdd

results.

We evaluated GReEneR on several applications from the benchmark suites

CUDA-SDK [2], GPGPU-SIM [14], Parboil [7], and Rodinia [19]. Table 4.3 shows

the list of applications and kernel that is simulated for each application. We com-

piled all the applications using CUDA-4.01 and simulated them using GPGPU-Sim

simulator. As discussed in Section 2.5, we simulated all the applications using their

PTXPlus representations because this chapter deals with the register resource and

PTXPlus uses more optimal number of registers.

We measured the effectiveness of our approach using the following metrics: (1)

Power, (2) Energy, (3) Simulation Cycles.

We use Baseline to denote the default GPGPU-Sim implementation that does

1GPGPU-Sim does not support above CUDA 4.0

94 Optimizations for Reducing Register File Leakage Energy

20%

25%

30%

35%

40%

45%

50%

55%

60%

B
P

B
F
S

1
B

F
S

2
B

S

L
IB

L
M

D

L
P

S

M
C

1
M

C
2

M
R

1
M

R
2

M
U

M
N

N
1

N
N

2

N
N

3

N
N

4

P
F

S
G

E
M

M
S

P

S
P

M
V

V
A

G
.M

e
a
n

R
e

d
u

c
ti
o

n
 i
n

 L
e

a
k
a

g
e

 P
o

w
e

r

Sleep-Reg GREENER

Figure 4.6: Comparing Register Leakage Power

not use any leakage power saving mechanisms. We denote Sleep-Reg for the approach

that optimizes the baseline approach by (1) turning OFF the unallocated registers

and (2) turning the allocated registers into SLEEP state immediately after the

registers are accessed as described in [8].

4.3.1 Comparing Register Leakage Power

Figure 4.6 shows the effectiveness of GReEneR and Sleep-Reg by measuring the

reduction in leakage power with respect to Baseline. From the figure, we observe that

GReEneR shows an average (Geometric Mean denoted as G.Mean) reduction of

leakage power by 47.24% when compared to the Baseline. It shows the GReEneR

is effective in turning the instruction registers into lower power state, such as SLEEP

or OFF state depending on the behavior of the registers. The Baseline does not

provide any mechanism to save the leakage power, as a result, the registers of a warp

continue to consume leakage power throughout the warp execution. We also expect

a reduction in leakage power, because two instructions that are separated by smaller

distance at compile time can be scheduled at different times, with a large number

of simulation cycles gap between their execution.

Figure 4.6 also shows that Sleep-Reg approach reduces the register leakage power

by 41.86% when compared to Baseline, however, GReEneR is more power efficient

than Sleep-Reg. It is because Sleep-Reg approach reduces the leakage power by

turning the instruction registers into SLEEP state immediately after the instruction

4.3 Experimental Analysis 95

-6%

-3%

0%

3%

6%

9%

12%

B
P

B
F
S

1
B

F
S

2
B

S

L
IB

L
M

D

L
P

S

M
C

1
M

C
2

M
R

1
M

R
2

M
U

M
N

N
1

N
N

2

N
N

3

N
N

4

P
F

S
G

E
M

M
S

P

S
P

M
V

V
A

G
.M

e
a
n

R
e

d
u

c
ti
o

n
 i
n

 S
im

u
la

ti
o

n
 C

y
c
le

s

Sleep-Reg GREENER

Figure 4.7: Comparing Performance in terms of Simulation Cycles

operands are accessed, without considering the access pattern of the registers. If a

register needs an immediate access, then keeping the register into SLEEP instead

of ON state requires additional latency cycles to wake up the register, and during

these additional cycles, the registers consume power. Further, GReEneR saves

more leakage power compared to Sleep-Reg by turning the registers into OFF state

when there is no future use of the register, whereas Sleep-Reg turns the register into

only SLEEP state irrespective of its further usage.

4.3.2 Performance Overhead Using Simulation Cycles

Figure 4.7 shows the performance overheads of GReEneR and Sleep-Reg approaches

in terms of the number of simulation cycles with respect to Baseline. On an aver-

age, the applications show a negligible performance overhead of 0.53% with respect

to Baseline. A slowdown is expected because GReEneR turns the registers into

SLEEP or OFF states to enable power savings, and these registers are turned back

to ON state (woken up) when they need to be accessed. This wake up process takes

few additional latency cycles which leads to increase in the number of simulation

cycles. The overhead is not high, because the additional latency cycles are hidden

by using the thread-level-parallelism and warp scheduling policy.

Interestingly, some applications (LPS, MC2, MR1, NN2, SP, and VA) show

improvement in their performance. This occurs due to the change in the issuing

order of the instructions. The warps that require their registers to be woken up

96 Optimizations for Reducing Register File Leakage Energy

20%

25%

30%

35%

40%

45%

50%

55%

60%

B
P

B
F
S

1
B

F
S

2
B

S

L
IB

L
M

D

L
P

S

M
C

1
M

C
2

M
R

1
M

R
2

M
U

M
N

N
1

N
N

2

N
N

3

N
N

4

P
F

S
G

E
M

M
S

P

S
P

M
V

V
A

G
.M

e
a
n

R
e

d
u

c
ti
o

n
 i
n

 L
e

a
k
a

g
e

 E
n

e
rg

y

Sleep-Reg GREENER

Figure 4.8: Comparing Register Leakage Energy

can not be issued in its current cycle, instead other resident warps that are ready

can be issued. This change in the issue order leads to change in the memory access

patterns, which in turns changes L1 and L2 cache misses etc. In case of LPS, MC2,

and NN2 applications, we observe an improvement in the performance due to less

number of pipeline stall cycles with GReEneR when compared to Baseline. MR1

shows less number of scoreboard stall cycles with GReEneR when compared to

Baseline. Though SP and VA applications have same number L1 and L2 cache

misses with GReEneR and Baseline approach, GReEneR shows less number of

pipeline stall cycles when compared to Baseline.

Figure 4.7 also shows that Sleep-Reg has an average performance degradation of

1.48% when compared to the Baseline approach. This degradation is more when

compared to GReEneR because Sleep-Reg turns all the instruction registers into

SLEEP state after the instruction operands are accessed, irrespective of their usage

pattern. If a register in SLEEP state is accessed in near future, it needs to be turned

on, this incurs additional wake up latencies with Sleep-Reg. Whereas, our approach

minimizes these additional wake up latency cycles by retaining such registers in the

ON state. However, MR2 performs better with Sleep-Reg because it shows less

number of scoreboard and idle cycles than that of GReEneR. Also, Sleep-Reg

performs better with BS and NN1 since it has less number of stall cycles when

compared to GReEneR.

4.3 Experimental Analysis 97

20%
25%
30%
35%
40%
45%
50%
55%
60%

BP BFS1

BFS2

BS LIB
LM

D
LPS

M
C
1

M
C
2

M
R
1

M
R
2

R
e

d
u

c
ti
o

n
 i
n

 L
e

a
k
a

g
e

 E
n

e
rg

y Sleep-Reg Comp-OPT GREENER

20%
25%
30%
35%
40%
45%
50%
55%
60%

M
U
M

N
N
1

N
N
2

N
N
3

N
N
4

PF SG
EM

M

SP SPM
V

VA

R
e
d
u
c
ti
o
n
 i
n
 L

e
a
k
a
g
e
 E

n
e
rg

y

Sleep-Reg Comp-OPT GREENER

Figure 4.9: Comparing Effectiveness of Individual Optimizations

4.3.3 Comparing Register Leakage Energy

Figure 4.8 compares the total energy savings of GReEneR and Sleep-Reg w.r.t.

Baseline. The results show that GReEneR achieves an average reduction of register

leakage energy by 46.96% and 10.1% when compared to Baseline and Sleep-Reg

respectively. From Figures 4.6 and 4.7, we see that GReEneR shows more leakage

power saving, also has negligible performance overhead with respect to the Baseline,

hence we achieve a significant reduction in leakage energy. Also, the applications

that exhibit more power savings and improve their performance with GReEneR,

further show more leakage energy savings. Similarly, the applications that show

leakage power savings but has more performance overhead will reduce their leakage

energy savings accordingly when compared to Baseline and Sleep-Reg approaches.

98 Optimizations for Reducing Register File Leakage Energy

4.3.4 Effectiveness of Optimizations

We show the effectiveness of the proposed optimizations in Figure 4.9. Note that

the figure has been split into two parts for better readability. From the figure,

we analyze that the compiler optimization (discussed in Section 4.2.1, and denoted

as Comp-OPT) saves more energy (average 47.14%) when compared to Sleep-Reg

(41.0%). This shows that turning the registers into low power states (SLEEP or

OFF state) with the knowledge of register access pattern is more effective than

turning the registers into SLEEP state after accessing them.

The run-time optimization (discussed in Section 4.2.3) is evaluated by combin-

ing it with Comp-OPT, and we denote them as GReEneR in the figure. From

the results, we observe that, for most of the applications, GReEneR show minor

improvements when compared to Comp-OPT respectively. This is because the run-

time optimization helps only in correcting power state of a register by turning to

ON state when it detects the future access to the register at run-time. However,

if the register is not found to be accessed in the near future at run-time, it does

not modify and retains the power state as directed by the Comp-OPT. For some

applications (e.g. NN2), GReEneR is less efficient when compared to Comp-OPT.

It occurs when a register that is determined to be accessed in the near future does

not get accessed due to reasons such as scheduling order, scoreboard stalls, or the

unavailability of the corresponding execution unit. In those cases, keeping the regis-

ter into low power states (SLEEP or OFF) can save more energy instead of keeping

it in ON state. Note that the effectiveness of run-time optimization depends on the

application behavior at the branch divergence points.

4.3.5 Analyzing Hardware Overheads

To support leakage power saving, CACTI-P [63] introduces additional sleep tran-

sistors into the SRAM structures. These transistors enable us to put the registers

into low power states (SLEEP or OFF) after accessing the operands (discussed in

Section 4.2.4), also they enable us to wake up the registers from lower power states

before accessing the operands. For the configuration used in our experiments, Ta-

ble 4.4 shows the additional area, latency, and energy associated with the additional

sleep transistors circuitry. Note that in our experiments, we conservatively consider

4.3 Experimental Analysis 99

Table 4.4: Hardware Overheads for Sleep Transistor Circuitry

Parameter Overhead
Area 0.04709 mm2

Wake up Latency (SLEEP to ON) 0.005759 ns (< 1 clock cycle)
Wake up Latency (OFF to ON state) 0.01749 ns (< 1 clock cycle)
Energy (SLEEP to ON and vice versa) 0.0373 nJ
Energy (OFF to ON and vice versa) 0.11774 nJ

the latency overhead to change the power state of a register from OFF to ON state

to be 2 cycles.

Recall that GReEneR encodes the power state of a register with its instruc-

tion, and we require 6 bits to encode the power states of the instruction registers.

Currently, NVIDIA does not disclose the machine code format of the instructions.

However, we can adopt either of the following two solutions as described in [85]. (1)

If the instruction format has 6 unused bits, we can exploit these bits to encode the

power states. In this case, the instruction length would not increase, and there is no

additional power overhead. (2) If there are no unused bits in the instruction format,

we can extend the instruction length by 6 bits to encode the power states. How-

ever, this incurs additional storage in the GPU pipeline, such as instruction buffers

overhead. We measure the additional overhead using GPUWattch framework by

increasing the instruction length by 8 bits (2-bit padding for byte alignment). We

observe that adding 8 bits to the instruction has < 0.0001% area overhead and <

0.005% leakage power overhead in each SM.

As discussed in Section 4.2.4, we are required to modify scoreboard unit in

the scheduler unit to keep track of the read after read dependencies. Currently,

GPUWattch does not support a power model for scoreboard unit. However, de-

pending on the following design choices we may require additional overheads. (1)

If the power model for scoreboard uses a bit mask to keep track of the registers

accessed by a warp, then we do not require any additional storage overhead. We

can use the existing bit mask to set the registers that will be read by a warp. (2)

Instead, if the scoreboard explicitly maintains the register numbers accessed by each

warp, then we need to store up to 4 source register numbers of an instruction. If

each SM allows W resident warps, and has R registers per each thread, then the

100 Optimizations for Reducing Register File Leakage Energy

-20%

-15%

-10%

-5%

0%

5%

10%

BP BFS1

BFS2

BS LIB
LM

D
LPS

M
C
1

M
C
2

M
R
1

M
R
2R

e
d

u
c
ti
o

n
 i
n

 S
im

u
la

ti
o

n
 C

y
c
le

s

Sleep-Reg-WL-2

GREENER-WL-2

Sleep-Reg-WL-3

GREENER-WL-3

Sleep-Reg-WL-4

GREENER-WL-4

-20%

-15%

-10%

-5%

0%

5%

10%

15%

M
U
M

N
N
1

N
N
2

N
N
3

N
N
4

PF SG
EM

M

SP SPM
V

VA

R
e

d
u

c
ti
o

n
 i
n

 S
im

u
la

ti
o

n
 C

y
c
le

s

Sleep-Reg-WL-2

GREENER-WL-2

Sleep-Reg-WL-3

GREENER-WL-3

Sleep-Reg-WL-4

GREENER-WL-4

Figure 4.10: Comparing Performance Overhead for Various Wake Up Latencies

additional storage overhead for this scheme is 4∗W ∗ log2(R). For the configuration

used in our experiments (i.e., W=64, R=64), the storage overhead is 192 bytes,

which is < 0.1% of register file size. Similarly, to support the run-time optimization,

we require a look up table. For our experiments, the additional storage required for

lookup table is 1280 bytes (< 1% of the register file size).

4.3.6 Effect of Wake up Latency

Figure 4.10 compares performance overhead of GReEneR and Sleep-Reg with the

Baseline for different values of wake up latencies. In the figure, GReEneR-WL-

X (X ∈ {2,3,4}) denotes the GReEneR approach, which considers the wake up

latency to change a register state from SLEEP to ON to be X cycles. Whereas,

4.3 Experimental Analysis 101

15%

30%

45%

60%

BP BFS1

BFS2

BS LIB
LM

D
LPS

M
C
1

M
C
2

M
R
1

M
R
2

R
e

d
u

c
ti
o

n
 i
n

 L
e

a
k
a

g
e

 E
n

e
rg

y

Sleep-Reg-WL-2

GREENER-WL-2

Sleep-Reg-WL-3

GREENER-WL-3

Sleep-Reg-WL-4

GREENER-WL-4

15%

30%

45%

60%

M
U
M

N
N
1

N
N
2

N
N
3

N
N
4

PF SG
EM

M

SP SPM
V

VAR
e

d
u

c
ti
o

n
 i
n

 L
e

a
k
a

g
e

 E
n

e
rg

y

Sleep-Reg-WL-2

GREENER-WL-2

Sleep-Reg-WL-3

GREENER-WL-3

Sleep-Reg-WL-4

GREENER-WL-4

Figure 4.11: Comparing the Leakage Energy for Various Wake Up Latencies

when a register state needs to be changed from OFF to ON, it considers the latency

to be 2X cycles. We use the similar notation for Sleep-Reg as well.

For most of the applications, GReEneR and Sleep-Reg show performance degra-

dation with the increase in the wake up latency. The increase in the overhead is

expected because applications spend additional simulation cycles for changing reg-

ister’s state from OFF or SLEEP state to ON state. Hence, with the increase in the

wake up latency, these additional simulation cycles will increase. Interestingly, some

applications (MC1 and MC2) show performance improvement with the increase in

the wake up latency. This is because, as discussed in Section 4.3.2, with the ad-

dition of wake up latency, the warps in the SM can get issued in different order,

which can change the number of L1-cache misses, L2-cache misses, and stall cycles

102 Optimizations for Reducing Register File Leakage Energy

5%

10%

15%

20%

25%

30%

35%

B
P

B
F
S

1
B

F
S

2
B

S

L
IB

L
M

D

L
P

S

M
C

1
M

C
2

M
R

1
M

R
2

M
U

M
N

N
1

N
N

2

N
N

3

N
N

4

P
F

S
G

E
M

M
S

P

S
P

M
V

V
A

G
.M

e
a
n

R
e

d
u

c
ti
o

n
 i
n

 L
e

a
k
a

g
e

 E
n

e
rg

y

Sleep-Reg GREENER

Figure 4.12: Comparing Leakage Energy by Including Routing Energy

etc. For MC1 and MC2, we find that the number pipeline stall cycles decrease with

increase in the wake up latencies. Similarly, for NN2 we observe more number of

L1 misses with GReEneR when used with wake latency 2 cycles than that of 3

cycles, hence GReEneR performs better with wake up latency 3 cycles. Also, for

NN2, GReEneR performs better than Baseline for all wake up latencies due to a

decrease in the L1 misses when compared to Baseline. In case of SP, GReEneR-

WL-2 has more stall cycles when compared to GReEneR-WL-3. Further, for most

of the applications GReEneR performs better than Sleep-Reg with various wake

up latencies.

We also compare the energy savings by varying the wake up latencies as shown

in Figure 4.11. The results indicate that even with varying the wake up latency,

the applications show significant reduction in the leakage energy when compared to

Baseline. Also, the applications show more energy savings with GReEneR when

compared to Sleep-Reg for all wake up latencies.

4.3.7 Leakage Energy Savings with Routing

So far we discussed the energy efficiency of registers in a register file, however, GPUs

also consume energy for routing of data and address through the register file. While

modeling the register file, McPAT uses H-Tree distribution network to route data

and address [62]. The H-Tree network spends a constant amount of leakage power,

and various organizations can be exploited to reduce this power and to meet routing

4.3 Experimental Analysis 103

20%

25%

30%

35%

40%

45%

50%

55%

60%

B
P

B
F
S

1
B

F
S

2
B

S

L
IB

L
M

D

L
P

S

M
C

1
M

C
2

M
R

1
M

R
2

M
U

M
N

N
1

N
N

2

N
N

3

N
N

4

P
F

S
G

E
M

M
S

P

S
P

M
V

V
A

G
.M

e
a
n

R
e

d
u

c
ti
o

n
 i
n

 L
e

a
k
a

g
e

 E
n

e
rg

y

Sleep-Reg-GTO GREENER-GTO

Figure 4.13: Comparing Leakage Energy with GTO Scheduler

20%

25%

30%

35%

40%

45%

50%

55%

60%

B
P

B
F
S

1
B

F
S

2
B

S

L
IB

L
M

D

L
P

S

M
C

1
M

C
2

M
R

1
M

R
2

M
U

M
N

N
1

N
N

2

N
N

3

N
N

4

P
F

S
G

E
M

M
S

P

S
P

M
V

V
A

G
.M

e
a
n

R
e

d
u

c
ti
o

n
 i
n

 L
e

a
k
a

g
e

 E
n

e
rg

y

Sleep-Reg-two-level GREENER-two-level

Figure 4.14: Comparing Leakage Energy with Two-Level Scheduler

requirement [18]. Our work focuses only on reducing the leakage power of memory

cells of the register file by analyzing the register access patterns, and reducing the

routing power is not in this scope. However, we show the effectiveness of GReEneR

by including the constant routing energy as shown in Figure 4.12. From the results,

we observe that GReEneR reduces the leakage energy on an average by 20.76%

when compared to Baseline, which is more than that of Sleep-Reg (17.4%). However,

the energy savings when including the routing energy are reduced when compared

to that of results in Figure 4.8 because GReEneR does not provide any mechanism

to optimize the routing power, hence the routing power remains unaffected.

104 Optimizations for Reducing Register File Leakage Energy

15%

30%

45%

60%

75%

90%

BP BFS1

BFS2

BS LIB
LM

D
LPS

M
C
1

M
C
2

M
R
1

M
R
2

R
e

d
u

c
ti
o

n
 i
n

 L
e

k
a

g
e

 E
n

e
rg

y

Sleep-Reg-45nm

GREENER-45nm

Sleep-Reg-32nm

GREENER-32nm

Sleep-Reg-22nm

GREENER-22nm

15%

30%

45%

60%

75%

90%

M
U
M

N
N
1

N
N
2

N
N
3

N
N
4

PF SG
EM

M

SP SPM
V

VAR
e

d
u

c
ti
o

n
 i
n

 L
e

k
a

g
e

 E
n

e
rg

y

Sleep-Reg-45nm

GREENER-45nm

Sleep-Reg-32nm

GREENER-32nm

Sleep-Reg-22nm

GREENER-22nm

Figure 4.15: Comparing the Leakage Energy for Different Technology Configurations

4.3.8 Leakage Energy Savings with Different Schedulers

Figure 4.13 and 4.14 show the effectiveness of GReEneR when it is evaluated

with GTO and two-level scheduling policies respectively. The figures compare

GReEneR and Sleep-Reg with Baseline by measuring the reduction in leakage

energy for the corresponding scheduling policies. The results show that GReEneR-

GTO and GReEneR-two-level achieve an average reduction leakage energy by

46.96% and 47.54% with respect to Baseline-GTO and Baseline-two-level respec-

tively. With different scheduling policies, the warps in the SM have different in-

terleaving patterns, which affect the distance between the two consecutive accesses

to a register. Even with the change in these access patterns, GReEneR shows

reduction in leakage energy when compared to Baseline and Sleep-Reg. We also find

4.3 Experimental Analysis 105

that Baseline-GTO performs better than Baseline-two-level in terms of simulation

cycles, hence Baseline-GTO relatively consumes less leakage energy when compared

to Baseline-two-level. However, the average energy savings of GReEneR are not

affected significantly even with change in the scheduler.

4.3.9 Leakage Energy with Various Technologies

Figure 4.15 shows the effectiveness of GReEneR for various technology parame-

ters (45nm, 32nm, and 22nm). The results show a significant reduction in leakage

energy with GReEneR for all the applications even for various technology nodes.

Further, it reduces the energy when compared to Sleep-Reg. With transition of tech-

nology from 45nm to 32nm, we observe an increase in the leakage energy for the

Baseline approach, but GReEneR shows an increase in the leakage energy savings

even with the transition. To model 22nm technology node, McPAT uses double

gated technology to reduce the amount of leakage power, even with the advances

in technology, GReEneR shows a reduction in leakage power when compared to

Baseline. To summarize, architectural techniques help in reducing the leakage power

of a register file, in addition, the knowledge of register access patterns and compiler

optimizations further help in reducing the leakage power and energy.

4.3.10 Comparing Leakage Energy for Various Threshold

Distances

Table 4.5 shows the effect of threshold distance on register leakage energy for

GReEneR. The results are collected by varying the threshold distance from 1

to 21. The table shows that keeping the threshold distance to 1 does not benefit

with respect to energy consumption, because with the shorter threshold distance,

the registers of an instruction are turned to SLEEP or OFF state need to be wo-

ken up soon, which leads to increase in the simulation cycles. Whereas, having a

high threshold distance also does not help in minimizing energy for all applications,

because with longer distance, a register can be turned into SLEEP or OFF only

when it is accessed after longer distance, this will result in losing the opportunity

to save leakage energy. Hence, having the threshold distance at intermediate level

106 Optimizations for Reducing Register File Leakage Energy

Table 4.5: Comparing Register Leakage Energy by Varying Threshold Distance

Benchmark/ 1 3 5 7 9 11 13 15 17 19 21
Threshold

BP 308.5 308.48 310.53 311.78 311.29 314.01 310.56 313.27 313.27 311.78 311.78
BFS1 52.59 52.03 52.15 52.15 52.15 52.15 52.15 52.15 52.15 52.15 52.15
BFS2 19.92 19.91 19.92 19.92 19.92 19.92 19.92 19.92 19.92 19.92 19.92

BS 2298.66 2283.88 2210.96 2249.95 2231.68 2222.5 2324.12 2231.23 2231.23 2231.23 2185.78
LIB 4055.96 4015.81 3987.68 3986.05 3986.02 3979.52 3970.48 3986.87 3981.64 3991.05 3993.07

LMD 2.99 2.97 2.97 2.97 2.97 2.97 2.97 2.97 2.97 2.97 2.97
LPS 248.26 245.55 248.81 246.51 249.65 247.68 247.68 247.69 247.7 244.8 244.81
MC1 31.58 30.85 30.34 31.65 30.66 31.85 31.85 31.85 31.85 31.85 31.85
MC2 3949.6 3975.91 3978.84 3974.95 3970.92 3966.58 4008.73 4008.74 4008.76 4008.76 4008.76
MR1 2.12 2.08 2.09 2.09 2.09 2.09 2.09 2.09 2.09 2.09 2.09
MR2 2938.98 3030.98 2944.6 2809.69 2809.69 2809.69 2893.19 2903.46 2903.46 2839.47 2848.97
MUM 337.54 335.58 339.29 332.98 341.28 338.97 340.3 335.59 335.59 339.94 340.53
NN1 69.12 67.48 67.44 69.32 66.25 68.31 67.72 67.72 69.03 69.03 69.03
NN2 236.49 231.07 231.28 234.39 231.44 228.27 224.24 234.73 225.9 225.9 225.9
NN3 2560.2 2539.9 2536.1 2532.21 2517.54 2503.09 2498.04 2502.43 2504.65 2504.65 2504.65
NN4 27.09 26.8 26.83 26.7 26.2 28.25 26.69 26.6 26.41 26.41 26.41
PF 273.22 274.27 275.43 276 275.59 275.8 275.82 276.73 276.73 278.27 278.27

SGEMM 5672.12 5660.97 5692.81 5680.86 5684.16 5670.51 5677.64 5672.13 5724.88 5730.11 5730.11
SP 265.82 270.1 259.65 264.32 250.81 287.31 277.71 277.71 277.71 277.71 277.71

SPMV 76.11 75.62 75.26 75.44 75.45 75.85 75.87 76.15 76.28 76.15 76.15
VA 10.85 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13

can achieve more energy savings.

Consider the application SGEMM. It achieves lowest energy at a threshold dis-

tance of 3. Further, with an increasing in the distance from 1 to 3, the leakage energy

tends to decrease, and with an increasing in the distance beyond 3 tends to increase

the energy. The similar behavior can be observed with BP as well. However, some

applications like LIB, MR2, NN1, NN3 and SP achieve their minimum energy at a

threshold distance other than 3. For applications like BFS1, the leakage energy does

not change beyond particular threshold distance, because a register can be turned

into SLEEP or OFF state only up to a certain distance, beyond that the register

must be kept in the ON the state even with increasing the threshold distance.

Finally, we chose the threshold distance of 3 for the experiments in the paper,

which achieves lowest energy for maximum number of applications. However, this

is not restrictive and can be reconfigured at compile time depending on application

behavior.

4.4 Summary 107

4.4 Summary

This chapter presents a system called GReEneR to minimize the leakage energy

of register file in the GPUs. It employs a compiler analysis and presents a run-time

optimization that help in turning the registers into low power states by analyzing

register access patterns. We implemented the proposed system in GPGPU-Sim

simulator and evaluated them on several kernels from CUDASDK, GPGPU-SIM,

Parboil, and Rodinia benchmark suites. We achieved an average reduction of register

leakage energy by 46.96% with a negligible performance overhead when compared

to baseline approach.

108 Optimizations for Reducing Register File Leakage Energy

Chapter 5

Related Work

GPUs are widely adopted for various general purpose applications [27, 33, 41, 66] due

to their compute capabilities. Therefore, improving GPU performance and energy

efficiency have become the crucial factors of GPU design in the recent years. This

thesis focuses on these two problems and proposes hardware and software solutions

by managing the on-chip resources effectively. To improve GPU performance, we

propose a resource sharing approach that improves the throughput by minimizing

the register and scratchpad memory underutilization. To improve the performance

further, we propose compiler optimizations that increase the availability of scratch-

pad memory that is associated with scratchpad sharing. To reduce the leakage

energy of GPU register file, we propose GReEneR that analyzes the register ac-

cess patterns and turns the registers into low power states. We discuss several other

efforts that focus on achieving these two goals below.

5.1 Improving GPU Performance

GPUs maintain large number of resources, such as registers, scratchpad mem-

ory, cache, schedulers, and DRAM to increase the TLP. However, the through-

put achieved by the GPUs depends on various factors, such as effective resource

utilization and scheduling polices at several stages of the GPU pipeline. In the

recent years, several hardware and software techniques were proposed to improve

the performance by exploiting various GPU resources and analyzing resource access

110 Related Work

patterns. We discuss some of these techniques below.

Register and Scratchpad Memory Management in GPUs: Shared mem-

ory multiplexing [96] technique comes closest to our resource sharing approach. It

provides software and hardware solutions to address the TLP problem caused by

limited shared memory. The software approach combines two thread blocks into a

single virtual thread block. The two thread blocks in a virtual block can execute

instructions in parallel, as long as they do not access shared memory; and become

serial when they need to access shared memory. The paper also describes a mecha-

nism (called CO-VTB) that divides the shared memory into private and public part

so that the thread blocks in a virtual block can access the private part in parallel

and the public part in serial. However, CO-VTB has a high overhead of partitioning

the data into private and public part, and is not suitable for all workloads. Also,

they need to generate the code manually. The paper also gives a hardware solution

to dynamically allocate and deallocate scratchpad memory using the existing barrier

instruction. Again, these instructions need to be inserted manually in the code, and

nesting of the barrier instructions is not allowed in order to avoid any deadlocks.

In contrast, resource sharing is a hardware solution that allows launching ad-

ditional thread blocks in each SM. These additional thread blocks use the wasted

scratchpad memory, and also share part of the allocated scratchpad memory with

other resident thread blocks. The additional thread blocks launched in our approach

make progress as long as they do not require shared scratchpad memory, and wait

until the shared scratchpad is released by other thread blocks. Our compiler op-

timizations are fully automatic—the compiler analysis automatically identifies the

regions of the shared and unshared scratchpad memory and inserts instruction to

release the shared scratchpad as early as possible. Even in the presence of bar-

rier instructions, our approach can not have deadlocks. In addition, we propose a

warp scheduling mechanism that effectively schedule these additional warps to hide

the long latencies in a better way. Section 3.4.1.10 compares our work with theirs

quantitatively, on the same benchmarks.

Warp level divergence [92] improves the TLP by minimizing register underuti-

lization. It launches one additional partial thread block when there are insufficient

number of registers for an entire thread block. However, the number of warps in the

5.1 Improving GPU Performance 111

partial thread block is decided by the number of unutilized registers, and also the

partial thread block does not share registers with any other thread blocks. The uni-

fied storage approach [26] allocates the resources of SM (such as registers, scratchpad

memory, and cache) dynamically as per the application demand. The patented reg-

ister management [90] uses the concept of virtual registers, which are more than the

actual physical registers, and hence can launch more thread blocks than allowed by

physical registers. Our compiler optimizations can help in early release of unused

registers with this approach. Gomez-Luna et al. [28] describe a mechanism to lock

and unlock parts of scratchpad memory. We can reutilize the existing mechanism

by defining a custom hash function that maps shared scratchpad memory regions to

corresponding lock addresses. For unshared scratch region, the access can be given

directly.

Virtual Thread [97] improves the GPU performance when the number of resident

thread blocks is limited by the scheduling constraint. In other words, it aims to

increase the TLP when the number of resident blocks is limited by the maximum

number of resident threads or the maximum number of thread blocks that can fit

in an SM. Whereas, our resource approach improves the TLP when the number of

resident thread blocks are limited by the on-chip registers or scratchpad memory

(denoted as capacity limit in their paper). Both the approaches are complementary

to each other – we can improve the performance and the resource utilization of

GPUs further when both the approaches are integrated. Kayiran et al. [46] propose

a dynamic algorithm to launch the optimal number of thread blocks in an SM to

reduce the resource contention. We can combine their techniques with our approach

to reduce the increase in the stall cycles that occur with shared thread blocks.

Compiler Optimizations for Efficient Resource Utilization in GPUs: Ma

et al. [68] proposed an algorithm for shared memory allocation using integer pro-

gramming framework. It improves the performance by maximizing the access to

shared memory and minimizing access to the device memory. Hayes et al. [32]

proposed an on-chip memory allocation scheme for efficient utilization of GPU re-

sources. It alleviates register pressure by spilling registers to scratchpad memory

instead of local memory. CRAT [94] introduces a compile time coordinated register

allocation scheme to minimize the cost of spilling registers. These schemes do not

112 Related Work

propose any architectural change to GPUs and are orthogonal to our resource shar-

ing approach. RegMutex [48] presents a compiler-microarchitecture design to time

multiplex the registers between warps. It divides the register file into base register

set and extended register set. The registers in the base register set are allocated to

the resident warps exclusively, whereas the extended registers are allocated based

on compiler directed instructions. Their approach, similar to our register sharing,

helps in increasing the warps residency. Whereas, we provide additional optimiza-

tions that manage the additional warps in an effective manner.

Scheduling Techniques to Improve GPU Performance: The two level warp

scheduling algorithm [75] partitions the resident warps into groups and schedules

the warps in each group according to LRR policy. CAWS [58] hides the long execu-

tion latencies by scheduling critical warps more frequently than other than warps.

However, it requires the knowledge of critical warps. To address this problem,

CAWA [57] identifies the critical warps at run-time by monitoring the number of

instructions and the number of stall cycles. Further, it accelerates the critical warps

in the SM using a greedy based critical warp scheduling algorithm. OWL [42] pro-

vides a scheduling mechanism to reduce cache contention and to improve DRAM

bank level parallelism. Lee et al. [55] propose a lazy thread block scheduling mech-

anism to reduce the resource contention. In addition, they propose a block level

CTA scheduling policy that allocates consecutive CTAs into the same SM to exploit

cache locality.

Improving GPU Performance through Memory Management: Several ap-

proaches exploit memory hierarchy to improve the performance of GPU applications.

Li et al. [60] proposed compiler techniques to efficiently place data onto registers,

scratchpad memory, and global memory by analyzing data access patterns. Mas-

car [88] provides a scheduling policy to improve the performance of memory intensive

workloads. It detects memory saturation events and prioritizes the memory requests

of a single warp to improve cache hit rate. Priority based cache allocation [61]

addresses the cache contention problem which occurs due to increased number of

resident threads in an SM. Their approach is alternative to the thread throttling

techniques [46, 82, 83].

5.2 Improving Energy Efficiency 113

Improving GPU Performance by Handling Warp Divergence: Dynamic

warp formation [24] addresses the limited thread level parallelism that is present

due to branch divergence. It dynamically forms new warps based on branch tar-

get condition. However, the performance of this approach is limited by the warp

scheduling policy. Thread block compaction [23] addresses the limitation of dynamic

warp formation that occurs when the new warps require more number of memory

accesses. It regroups the new warps at the reconverging points. However in their

solution, warps need to wait for other warps to reach the divergent path. Anantpur

et al. [12] proposed linearization technique to avoid duplicate execution of instruc-

tions that occurs due to branch divergence in GPUs. Similarly, other hardware and

software techniques [17, 20, 30, 69, 81] were proposed to handle branch and thread

divergence, and these are orthogonal to our approach.

Miscellaneous: Warped pre-execution [49] accelerates a single warp by executing

independent instructions when a warp is stalled due to long latency instruction.

Further, it improves the GPU performance by hiding the long latency cycles in

a better way. Baskaran et al. [15] proposed a compiler framework for optimizing

memory access in affine loops. [29, 37] show that several applications are improved

by using scratchpad memory instead of using global memory. Li et al. [64] propose

a resource virtualization scheme for sharing of GPU resources with multiprocessors.

The virtualization layer proposed by them helps in improving the performance by

overlapping multiple kernels executions.

5.2 Improving Energy Efficiency

Leakage and dynamic power are the two major sources of power dissipation in CMOS

technology. Reducing the leakage and dynamic power has been well studied in the

context of CPUs when compared to GPUs. Though GReEneR is only for saving

leakage power consumption of GPU register files, we describe briefly the techniques

to save leakage and dynamic power in the context of both CPUs as well as GPUs. In

addition, we discuss the power models that measure the power dissipation for CPU

and GPU components. A comprehensive list of architectural techniques to reduce

leakage and dynamic power of CPUs are described in [45]. Mittal et al. [70] discuss

114 Related Work

the state of the art approaches for reducing the power consumption of CPU register

file. A survey of methods to reduce GPU power is presented in [71].

CPU Leakage Power Saving Techniques: Powell et al. [79] proposed a state

destroying technique, Gated-Vdd, to minimize the leakage power of SRAM cells by

gating supply voltage. Several methods [44, 95, 98] leverage Gated-Vdd technique

to reduce the leakage power of cache memory by turning off the inactive cache

lines. However, these techniques cannot preserve the state of the memory cells. To

maintain the state, Flautner et al. [22] proposed an architectural technique that

reduces the leakage power by putting the cache lines into a drowsy state. Other

approaches [36, 78] exploit this by using cache access patterns to put cache lines in

the drowsy state. As expected, the leakage power savings in this (drowsy) approach

are less when compared to Gated-Vdd approach.

GPU Leakage Power Saving Techniques: Warped register file [8] reduces leak-

age power of register files by putting the registers into the drowsy state immediately

after accessing them. However, it does not take into account the register access

pattern while turning the registers into low power states, hence it can have high

overhead whenever there are frequent wake up signals to the drowsy registers. In

contrast, GReEneR considers register access information and proposes compile-

time and run-time optimizations to make the register file energy efficient.

Register file virtualization [38] reduces the register leakage power by reallocating

unused registers to another warp. This uses additional meta instructions to turn

off the unused registers. However, the meta instructions are inserted at every 18

instructions, which can cause a delay in turning off the registers. GReEneR en-

codes the power saving states of the registers in the same instruction, and hence

the registers can be switched to low power state at the earliest. Their approach

optimizes power for unused registers only, while GReEneR can put even a used

register into low power state if the next use is far away in the execution.

Pilot register file [9] partitions the register file into fast and slow register files,

and it allocates the registers into these parts depending on the frequency of the

register usage. It uses compiler and profiling information to allocate the register

into one of these parts. The partition of the registers is done statically. Therefore,

5.2 Improving Energy Efficiency 115

if a register is accessed more frequently for some duration, and less frequently for

other duration, then allocating the register to either of the partitions can make it

less energy efficient. GReEneR changes power state during the execution, so it

does not suffer from this drawback.

Dynamic Power Saving Techniques for CPU and GPU: In CPUs, dynamic

voltage frequency scaling (DVFS) has been widely adopted at the system level [91],

compiler level [35, 93], and hardware level [86] to reduce dynamic power consump-

tion. In case of GPUs, equalizer [89] dynamically adjusts the core and memory

frequencies depending on the application behavior and the user requirement (i.e.,

power or performance). Lee et al. [54] propose mechanisms to dynamically adjust

the voltage and frequency values to improve the throughput of applications under

the power constraints. GPUWattch [59] uses DVFS algorithm to reduce the dy-

namic power by adjusting the processor frequency depending on the number of stall

cycles. Warped compression [56] exploits the register value similarity to reduce ef-

fective register file size to minimize the dynamic as well as leakage power. Gebhart

et al. [25] propose two complementary techniques to reduce GPU energy. The hier-

archical register file proposed by them reduces register file energy by replacing the

single register file with a multilevel hierarchical register file. Further, they design a

multi level scheduler that partitions warps to active and pending warps and propose

mechanisms to schedule these warps to achieve energy efficiency. These techniques

mainly focus on reducing the dynamic power of GPUs and are orthogonal to our

approach.

Power Models: CACTI [18] is an analytical model for estimating area, power,

cycle time of cache and memory units. CACTI-P [63] is an extension of CACTI that

introduces power gating logic to minimize the leakage power consumption by adding

sleep transistors. Wattch [16] and McPAT [62] are the frameworks for analyzing the

CPU power dissipation at cycle level. However, these models lack the support for

GPUs. Hong et al. [34] propose integrated power and performance model that

supports GPU, but it does not support cycle level power simulation and cannot be

configured for different architectures. GPUWattch [59] is built on the top of McPAT

to measure the power and area for the GPU architectures that provides cycle level

116 Related Work

power estimation. This tool has been integrated with GPGPU-Sim simulator to

collect the simulation statistics.

Miscellaneous: Seth et al. [87] present algorithmic strategies for insertion of pro-

cessor idle instructions at various points in the program such that the overall energy

is reduced. LTRF [84] employs compiler optimizations to achieve low latency multi-

level hierarchical register file while reducing the power consumption of the register

file. RegLess [52] reduces the register storage space by using compiler annotations.

Warped Gates [10] exploits the idle execution units to reduce the leakage power with

a gating aware scheduling policy. This approach is complementary to GReEneR

and it should be possible to combine the two techniques to further reduce leakage

power.

Chapter 6

Conclusions and Future Work

This thesis deals with the two aspects of the GPU design: (1) improving throughput

and (2) improving energy efficiency. To improve GPU performance, we propose

resource sharing that exploits the on-chip GPU resources (registers and scratchpad

memory) by managing them effectively. The key is to increase the number of resident

thread blocks, consequently the thread level parallelism. This is achieved by reducing

the resources’ underutilization by sharing them among the resident thread blocks. To

further improve the effectiveness of resource sharing, we propose three optimizations

that manage the warps from the additional thread blocks effectively.

Experiments with various benchmarks help us to conclude that the additional

thread blocks along with the optimizations help in hiding the long execution laten-

cies, thus improving the throughput. When the number of resident thread blocks

launched by an application is limited by registers, register sharing improves the per-

formance. Similarly, if the number of resident thread blocks are limited by scratch-

pad memory, scratchpad sharing improves the performance. On the other hand, for

other applications where the number of thread blocks is not limited by scratchpad

or registers, the hardware changes do not negatively impact the run-time. We also

observe that resource sharing will be more effective if programs start accessing the

shared part of the resource as late as possible. This allows additional thread blocks

to increase the TLP by executing more number of instructions before they start

accessing shared resource.

Another important observation from the benchmarks was that the resources

allocated to a thread block are released only after all the threads of a thread block

118 Conclusions and Future Work

finish their execution even though the resources are not accessed till the end of

program execution. This mechanism not only affects of availability of resources but

also reduces the amount of TLP. We propose compiler optimizations to improve

the availability of the shared scratchpad memory that is associated with scratchpad

sharing. The results of the experiments show that the compiler optimizations help in

improving in the throughput by releasing the shared part of the scratchpad sooner.

The other part of the thesis focuses on reducing the leakage power of the register

file in GPUs. We discuss various opportunities to save leakage power of the regis-

ters by analyzing the access patterns of the registers. We propose a system called

GReEneR that employs compiler analysis to determines the power state of each

register at each program point. To improve the effectiveness further, we introduce

a run-time optimization that dynamically corrects the power states determined by

the static analysis.

On evaluating GReEneR using several applications, we observed that the knowl-

edge of register access patterns and the compiler optimizations help in improving the

energy efficiency of register file with a negligible number of simulation cycles over-

head. Further, we analyze that run-time optimization is effective when the power

state estimated by the static analysis is sub-optimal at run-time.

6.1 Future Directions

In future, we can extend the resource sharing approach to improve the performance

further. Also, the current research focuses only on managing the registers and

scratchpad memory resources. In future, the research can be extended to other

GPU resources, such as shared memory, cache, and DRAM. Several static/run-

time techniques can be studied to improve GPU performance and energy efficiency

by analyzing resource access patterns. We discuss few short-term and long-term

research directions in this context below.

6.1.1 Short-term Research Directions

1. We can incorporate the traditional compiler analysis and optimizations into

the resource sharing approach. For example, live range analysis [31, 80] along

6.1 Future Directions 119

with instruction reordering can be used to detect and release registers that are

not used beyond a point. Such registers, if shared, can be used by the warp

in the other thread block waiting for shared registers.

2. To improve resource sharing approach further, we can study the effect of vari-

ous techniques such as, increasing the number of registers per thread, allocat-

ing temporary variables into available resources, and applying cache replace-

ment policies.

3. Currently, we could not find a kernel whose number of resident thread blocks

are limited by both registers and scratchpad memory. However, in future, we

can combine both register sharing and scratchpad sharing to improve perfor-

mance of applications that are limited by both the resources.

4. We can study various techniques for register allocation and reducing the reg-

ister bank conflicts that not only help in improving the GPU performance but

also help in reducing the register file leakage energy.

6.1.2 Long-term Research Directions

1. Cache and Memory: In GPUs, the pattern in which memory locations

accessed by different threads can affect the performance [88]. For instance,

coalesced memory access pattern yields better performance results than un-

coalesced access patterns [11, 51]. Moreover, changes in the memory access

pattern also affect the number of L1 and L2 cache misses due to change in

spatial and temporal locality [39, 40]. This can be addressed by analyzing

the possible interleavings of memory accesses and incorporating compiler op-

timizations that can transform a given program to an optimized program,

which not only improves performance but also achieves energy efficiency.

2. Scheduling Mechanisms: GPU features different schedulers at various stages

of its pipeline, such as thread block scheduler [55], warp scheduler [58, 75], and

DRAM scheduler [53]. Several scheduling algorithms were proposed, which

schedule job requests by analyzing the application behavior (i.e., memory

120 Conclusions and Future Work

bound and computed bound etc.) to improve performance [83, 88]. In con-

trast, we can develop scheduling algorithms that can achieve both performance

improvement and energy efficiency regardless of application behavior.

3. Exploiting Execution Units for Energy: GPU maintains large number of

execution units such as ALUs, SFUs, and Load/Store units [4]. However, the

execution units may not be active throughout the entire execution of an appli-

cation, as a result, they dissipate a significant amount of power [10, 59]. This

can be addressed by using runtime techniques that reduce power consumption

of execution units.

4. CPU-GPU Heterogeneous Architectures: Stand-alone CPUs and GPUs

have their own advantages in improving the performance of various types of ap-

plications depending on their behavior. For instance, applications that require

more data transfer time compared to execution time can benefit from CPUs

rather than GPUs. Similarly, the applications that expose more parallelism

and has less branch divergence can benefit from GPUs instead of CPUs.

To exploit both these processing units, researchers have investigated in col-

laborating CPU and GPUs. Several architectural, compiler and algorithmic

strategies are proposed that utilize both CPU and GPUs to further improve

performance, resource utilization, and energy efficiency. Mittal et al. [72] dis-

cuss the state-of-the-art techniques for CPU-GPU heterogeneous computing

systems that focus on these issues. We plan to explore this area to study

the impact of various resource management techniques on performance and

energy.

References

[1] CUDA C Programming Guide. https://docs.nvidia.com/cuda/

cuda-c-programming-guide/.

[2] CUDA-SDK. http://docs.nvidia.com/cuda/cuda-samples.

[3] GPGPU-Sim. http://www.gpgpu-sim.org.

[4] Kepler Architecture. https://www.nvidia.com/content/PDF/kepler/

NVIDIA-Kepler-GK110-Architecture-Whitepaper.pdf.

[5] OpenCL. https://www.khronos.org/opencl/.

[6] Parallel Thread Execution. http://docs.nvidia.com/cuda/

parallel-thread-execution/.

[7] Parboil Benchmarks. http://impact.crhc.illinois.edu/Parboil/

parboil.aspx.

[8] Abdel-Majeed, M., and Annavaram, M. Warped Register File: A Power

Efficient Register File for GPGPUs. In Proceedings of the 2013 IEEE 19th

International Symposium on High Performance Computer Architecture (2013),

HPCA ’13, IEEE Computer Society, pp. 412–423.

[9] Abdel-Majeed, M., Shafaei, A., Jeon, H., Pedram, M., and An-

navaram, M. Pilot Register File: Energy Efficient Partitioned Register File

for GPUs. In 2017 IEEE International Symposium on High Performance Com-

puter Architecture, HPCA 2017, Austin, TX, USA, February 4-8, 2017 (2017),

pp. 589–600.

https://docs.nvidia.com/cuda/cuda-c-programming-guide/
https://docs.nvidia.com/cuda/cuda-c-programming-guide/
http://docs.nvidia.com/cuda/cuda-samples
http://www.gpgpu-sim.org
https://www.nvidia.com/content/PDF/kepler/NVIDIA-Kepler-GK110-Architecture-Whitepaper.pdf
https://www.nvidia.com/content/PDF/kepler/NVIDIA-Kepler-GK110-Architecture-Whitepaper.pdf
https://www.khronos.org/opencl/
http://docs.nvidia.com/cuda/parallel-thread-execution/
http://docs.nvidia.com/cuda/parallel-thread-execution/
http://impact.crhc.illinois.edu/Parboil/parboil.aspx
http://impact.crhc.illinois.edu/Parboil/parboil.aspx

122 REFERENCES

[10] Abdel-Majeed, M., Wong, D., and Annavaram, M. Warped Gates:

Gating Aware Scheduling and Power Gating for GPGPUs. In Proceedings of

the 46th Annual IEEE/ACM International Symposium on Microarchitecture

(2013), MICRO-46, ACM, pp. 111–122.

[11] Amilkanthwar, M., and Balachandran, S. CUPL: A Compile-time Un-

coalesced Memory Access Pattern Locator for CUDA. In Proceedings of the 27th

International ACM Conference on International Conference on Supercomputing

(2013), ICS ’13, ACM, pp. 459–460.

[12] Anantpur, J., and Govindarajan, R. Taming Control Divergence in

GPUs through Control Flow Linearization. In Compiler Construction - 23rd

International Conference, CC 2014, Held as Part of the European Joint Con-

ferences on Theory and Practice of Software, ETAPS 2014, Grenoble, France,

April 5-13, 2014. Proceedings (2014), pp. 133–153.

[13] Asanovic, K., Bodik, R., Demmel, J., Keaveny, T., Keutzer, K., Ku-

biatowicz, J., Morgan, N., Patterson, D., Sen, K., Wawrzynek, J.,

Wessel, D., and Yelick, K. A View of the Parallel Computing Landscape.

Commun. ACM 52, 10 (Oct. 2009), 56–67.

[14] Bakhoda, A., Yuan, G. L., Fung, W. W. L., Wong, H., and Aamodt,

T. M. Analyzing CUDA workloads using a detailed GPU simulator. In 2009

IEEE International Symposium on Performance Analysis of Systems and Soft-

ware (April 2009), pp. 163–174.

[15] Baskaran, M. M., Bondhugula, U., Krishnamoorthy, S., Ramanu-

jam, J., Rountev, A., and Sadayappan, P. A Compiler Framework for

Optimization of Affine Loop Nests for GPGPUs. In Proceedings of the 22Nd

Annual International Conference on Supercomputing (2008), ICS ’08, ACM,

pp. 225–234.

[16] Brooks, D., Tiwari, V., and Martonosi, M. Wattch: A Framework for

Architectural-level Power Analysis and imizations. In Proceedings of the 27th

Annual International Symposium on Computer Architecture (2000), ISCA ’00,

ACM, pp. 83–94.

REFERENCES 123

[17] Brunie, N., Collange, S., and Diamos, G. Simultaneous Branch and

Warp Interweaving for Sustained GPU Performance. In Proceedings of the 39th

Annual International Symposium on Computer Architecture (2012), ISCA ’12,

IEEE Computer Society, pp. 49–60.

[18] CACTI. http://www.hpl.hp.com/research/cacti.

[19] Che, S., Boyer, M., Meng, J., Tarjan, D., Sheaffer, J. W., Lee,

S.-H., and Skadron, K. Rodinia: A Benchmark Suite for Heterogeneous

Computing. In Proceedings of the 2009 IEEE International Symposium on

Workload Characterization (2009), IISWC ’09, IEEE Computer Society, pp. 44–

54.

[20] Diamos, G., Ashbaugh, B., Maiyuran, S., Kerr, A., Wu, H., and

Yalamanchili, S. SIMD Re-convergence at Thread Frontiers. In Proceedings

of the 44th Annual IEEE/ACM International Symposium on Microarchitecture

(2011), MICRO-44, ACM, pp. 477–488.

[21] Diamos, G. F., Kerr, A. R., Yalamanchili, S., and Clark, N. Ocelot:

A Dynamic Optimization Framework for Bulk-synchronous Applications in Het-

erogeneous Systems. In Proceedings of the 19th International Conference on

Parallel Architectures and Compilation Techniques (2010), PACT ’10, ACM,

pp. 353–364.

[22] Flautner, K., Kim, N. S., Martin, S., Blaauw, D., and Mudge, T.

Drowsy Caches: Simple Techniques for Reducing Leakage Power. SIGARCH

Comput. Archit. News 30, 2 (May 2002), 148–157.

[23] Fung, W. W. L., and Aamodt, T. M. Thread Block Compaction for Effi-

cient SIMT Control Flow. In Proceedings of the 2011 IEEE 17th International

Symposium on High Performance Computer Architecture (2011), HPCA ’11,

IEEE Computer Society, pp. 25–36.

[24] Fung, W. W. L., Sham, I., Yuan, G., and Aamodt, T. M. Dynamic

Warp Formation and Scheduling for Efficient GPU Control Flow. In Proceedings

of the 40th Annual IEEE/ACM International Symposium on Microarchitecture

(2007), MICRO 40, IEEE Computer Society, pp. 407–420.

http://www.hpl.hp.com/research/cacti

124 REFERENCES

[25] Gebhart, M., Johnson, D. R., Tarjan, D., Keckler, S. W., Dally,

W. J., Lindholm, E., and Skadron, K. A Hierarchical Thread Scheduler

and Register File for Energy-Efficient Throughput Processors. ACM Trans.

Comput. Syst. 30, 2 (Apr. 2012), 8:1–8:38.

[26] Gebhart, M., Keckler, S. W., Khailany, B., Krashinsky, R., and

Dally, W. J. Unifying Primary Cache, Scratch, and Register File Memories in

a Throughput Processor. In Proceedings of the 2012 45th Annual IEEE/ACM

International Symposium on Microarchitecture (2012), MICRO-45, IEEE Com-

puter Society, pp. 96–106.

[27] GNU Linear Programming Kit. https://www.gnu.org/software/glpk/.

[28] Gomez-Luna, J., Gonzalez-Linares, J. M., Benavides Benitez, J. I.,

and Guil, N. Performance Modeling of Atomic Additions on GPU Scratchpad

Memory. IEEE Trans. Parallel Distrib. Syst. 24, 11 (Nov. 2013), 2273–2282.

[29] Gutierrez, E., Romero, S., Trenas, M., and Zapata, E. Memory

Locality Exploitation Strategies for FFT on the CUDA Architecture. In Inter-

national Meeting on High-Performance Computing for Computational Science

(2008), vol. 5336.

[30] Han, T. D., and Abdelrahman, T. S. Reducing Branch Divergence in

GPU Programs. In Proceedings of the Fourth Workshop on General Purpose

Processing on Graphics Processing Units (2011), GPGPU-4, ACM, pp. 3:1–3:8.

[31] Harrison, W. H. Compiler Analysis of the Value Ranges for Variables. IEEE

Trans. Softw. Eng. 3, 3 (May 1977), 243–250.

[32] Hayes, A. B., and Zhang, E. Z. Unified On-chip Memory Allocation for

SIMT Architecture. In Proceedings of the 28th ACM International Conference

on Supercomputing (2014), ICS ’14, ACM, pp. 293–302.

[33] He, B., Fang, W., Luo, Q., Govindaraju, N. K., and Wang, T. Mars:

A MapReduce Framework on Graphics Processors. In Proceedings of the 17th

International Conference on Parallel Architectures and Compilation Techniques

(2008), PACT ’08, ACM, pp. 260–269.

https://www.gnu.org/software/glpk/

REFERENCES 125

[34] Hong, S., and Kim, H. An Integrated GPU Power and Performance Model.

In Proceedings of the 37th Annual International Symposium on Computer Ar-

chitecture (2010), ISCA ’10, ACM, pp. 280–289.

[35] Hsu, C.-H., and Kremer, U. The Design, Implementation, and Evalua-

tion of a Compiler Algorithm for CPU Energy Reduction. In Proceedings of

the ACM SIGPLAN 2003 Conference on Programming Language Design and

Implementation (2003), PLDI ’03, ACM, pp. 38–48.

[36] Hu, J. S., Nadgir, A., Vijaykrishnan, N., Irwin, M. J., and Kan-

demir, M. Exploiting Program Hotspots and Code Sequentiality for Instruc-

tion Cache Leakage Management. In Proceedings of the 2003 International

Symposium on Low Power Electronics and Design (2003), ISLPED ’03, ACM,

pp. 402–407.

[37] Huo, X., Ravi, V. T., Ma, W., and Agrawal, G. Approaches for par-

allelizing reductions on modern GPUs. In 2010 International Conference on

High Performance Computing (Dec 2010), pp. 1–10.

[38] Jeon, H., Ravi, G. S., Kim, N. S., and Annavaram, M. GPU Register

File Virtualization. In Proceedings of the 48th International Symposium on

Microarchitecture (2015), MICRO-48, ACM, pp. 420–432.

[39] Jia, W., Shaw, K. A., and Martonosi, M. Characterizing and Improving

the Use of Demand-fetched Caches in GPUs. In Proceedings of the 26th ACM

International Conference on Supercomputing (2012), ICS ’12, ACM, pp. 15–24.

[40] Jia, W., Shaw, K. A., and Martonosi, M. MRPB: Memory request

prioritization for massively parallel processors. In 2014 IEEE 20th International

Symposium on High Performance Computer Architecture (HPCA) (Feb 2014),

pp. 272–283.

[41] Jiang, C., and Snir, M. Automatic Tuning Matrix Multiplication Perfor-

mance on Graphics Hardware. In Proceedings of the 14th International Confer-

ence on Parallel Architectures and Compilation Techniques (2005), PACT ’05,

IEEE Computer Society, pp. 185–196.

126 REFERENCES

[42] Jog, A., Kayiran, O., Chidambaram Nachiappan, N., Mishra, A. K.,

Kandemir, M. T., Mutlu, O., Iyer, R., and Das, C. R. OWL: Co-

operative Thread Array Aware Scheduling Techniques for Improving GPGPU

Performance. In Proceedings of the Eighteenth International Conference on Ar-

chitectural Support for Programming Languages and Operating Systems (2013),

ASPLOS ’13, ACM, pp. 395–406.

[43] Kam, J. B., and Ullman, J. D. Global Data Flow Analysis and Iterative

Algorithms. J. ACM 23, 1 (Jan. 1976), 158–171.

[44] Kaxiras, S., Hu, Z., and Martonosi, M. Cache Decay: Exploiting Gen-

erational Behavior to Reduce Cache Leakage Power. In Proceedings of the

28th Annual International Symposium on Computer Architecture (2001), ISCA,

ACM, pp. 240–251.

[45] Kaxiras, S., and Martonosi, M. Computer Architecture Techniques for

Power-Efficiency, 1st ed. Morgan and Claypool publishers, 2008.

[46] Kayiran, O., Jog, A., Kandemir, M. T., and Das, C. R. Neither More

nor Less: Optimizing Thread-level Parallelism for GPGPUs. In Proceedings of

the 22Nd International Conference on Parallel Architectures and Compilation

Techniques (2013), PACT ’13, IEEE Press, pp. 157–166.

[47] Khedker, U., Sanyal, A., and Karkare, B. Data Flow Analysis: Theory

and Practice, 1st ed. CRC Press, Inc., 2009.

[48] Khorasani, F., Esfeden, H. A., Farmahini-Farahani, A., Jayasena,

N., and Sarkar, V. RegMutex: Inter-Warp GPU Register Time-Sharing. In

2018 ACM/IEEE 45th Annual International Symposium on Computer Archi-

tecture (ISCA) (June 2018), pp. 816–828.

[49] Kim, K., Lee, S., Yoon, M. K., Koo, G., Ro, W. W., and Annavaram,

M. Warped-preexecution: A GPU pre-execution approach for improving la-

tency hiding. In 2016 IEEE International Symposium on High Performance

Computer Architecture (HPCA) (March 2016), pp. 163–175.

REFERENCES 127

[50] Kim, N. S., Austin, T., Blaauw, D., Mudge, T., Flautner, K., Hu,

J. S., Irwin, M. J., Kandemir, M., and Narayanan, V. Leakage Current:

Moore’s Law Meets Static Power. Computer 36, 12 (Dec. 2003), 68–75.

[51] Kim, Y., and Shrivastava, A. CuMAPz: A Tool to Analyze Memory Access

Patterns in CUDA. In Proceedings of the 48th Design Automation Conference

(2011), DAC ’11, ACM, pp. 128–133.

[52] Kloosterman, J., Beaumont, J., Jamshidi, D. A., Bailey, J., Mudge,

T., and Mahlke, S. Regless: Just-in-time Operand Staging for GPUs. In

Proceedings of the 50th Annual IEEE/ACM International Symposium on Mi-

croarchitecture (2017), MICRO-50 ’17, ACM, pp. 151–164.

[53] Lakshminarayana, N. B., Lee, J., Kim, H., and Shin, J. DRAM

Scheduling Policy for GPGPU Architectures Based on a Potential Function.

Computer Architecture Letters 11, 2 (2012), 33–36.

[54] Lee, J., Sathisha, V., Schulte, M., Compton, K., and Kim, N. S. Im-

proving Throughput of Power-Constrained GPUs Using Dynamic Voltage/Fre-

quency and Core Scaling. In Proceedings of the 2011 International Conference

on Parallel Architectures and Compilation Techniques (2011), PACT ’11, IEEE

Computer Society, pp. 111–120.

[55] Lee, M., Song, S., Moon, J., Kim, J., Seo, W., Cho, Y., and Ryu,

S. Improving GPGPU resource utilization through alternative thread block

scheduling. In 2014 IEEE 20th International Symposium on High Performance

Computer Architecture (HPCA) (Feb 2014), pp. 260–271.

[56] Lee, S., Kim, K., Koo, G., Jeon, H., Ro, W. W., and Annavaram,

M. Warped-compression: Enabling Power Efficient GPUs Through Register

Compression. In Proceedings of the 42Nd Annual International Symposium on

Computer Architecture (2015), ISCA ’15, ACM, pp. 502–514.

[57] Lee, S.-Y., Arunkumar, A., and Wu, C.-J. CAWA: Coordinated Warp

Scheduling and Cache Prioritization for Critical Warp Acceleration of GPGPU

Workloads. In Proceedings of the 42Nd Annual International Symposium on

Computer Architecture (2015), ISCA ’15, ACM, pp. 515–527.

128 REFERENCES

[58] Lee, S.-Y., and Wu, C.-J. CAWS: Criticality-aware Warp Scheduling for

GPGPU Workloads. In Proceedings of the 23rd International Conference on

Parallel Architectures and Compilation (2014), PACT ’14, ACM, pp. 175–186.

[59] Leng, J., Hetherington, T., ElTantawy, A., Gilani, S., Kim, N. S.,

Aamodt, T. M., and Reddi, V. J. GPUWattch: Enabling Energy Opti-

mizations in GPGPUs. In Proceedings of the 40th Annual International Sym-

posium on Computer Architecture (2013), ISCA ’13, ACM, pp. 487–498.

[60] Li, C., Yang, Y., Lin, Z., and Zhou, H. Automatic Data Placement

into GPU On-chip Memory Resources. In Proceedings of the 13th Annual

IEEE/ACM International Symposium on Code Generation and Optimization

(2015), CGO ’15, IEEE Computer Society, pp. 23–33.

[61] Li, D., Rhu, M., Johnson, D. R., O’Connor, M., Erez, M., Burger,

D., Fussell, D. S., and Redder, S. W. Priority-based cache allocation in

throughput processors. In 2015 IEEE 21st International Symposium on High

Performance Computer Architecture (HPCA) (Feb 2015), pp. 89–100.

[62] Li, S., Ahn, J. H., Strong, R. D., Brockman, J. B., Tullsen, D. M.,

and Jouppi, N. P. The McPAT Framework for Multicore and Manycore Ar-

chitectures: Simultaneously Modeling Power, Area, and Timing. ACM Trans.

Archit. Code im. 10, 1 (Apr. 2013), 5:1–5:29.

[63] Li, S., Chen, K., Ahn, J. H., Brockman, J. B., and Jouppi, N. P.

CACTI-P: Architecture-level Modeling for SRAM-based Structures with Ad-

vanced Leakage Reduction Techniques. In Proceedings of the International Con-

ference on Computer-Aided Design (2011), ICCAD ’11, IEEE Press, pp. 694–

701.

[64] Li, T., Narayana, V. K., El-Araby, E., and El-Ghazawi, T. GPU Re-

source Sharing and Virtualization on High Performance Computing Systems. In

Proceedings of the 2011 International Conference on Parallel Processing (2011),

ICPP ’11, IEEE Computer Society, pp. 733–742.

REFERENCES 129

[65] Lim, J., Lakshminarayana, N. B., Kim, H., Song, W., Yalamanchili,

S., and Sung, W. Power Modeling for GPU Architectures Using McPAT.

ACM Trans. Des. Autom. Electron. Syst. 19, 3 (June 2014), 26:1–26:24.

[66] Liu, W., Schmidt, B., Voss, G., and Muller-Wittig, W. Streaming

Algorithms for Biological Sequence Alignment on GPUs. IEEE Trans. Parallel

Distrib. Syst. 18, 9 (Sept. 2007), 1270–1281.

[67] Lucas, J., Lal, S., Andersch, M., Alvarez-Mesa, M., and Juurlink,

B. How a single chip causes massive power bills GPUSimPow: A GPGPU power

simulator. 2013 IEEE International Symposium on Performance Analysis of

Systems and Software (ISPASS) 00 (2013), 97–106.

[68] Ma, W., and Agrawal, G. An Integer Programming Framework for Op-

timizing Shared Memory Use on GPUs. In Proceedings of the 19th Interna-

tional Conference on Parallel Architectures and Compilation Techniques (2010),

PACT ’10, ACM, pp. 553–554.

[69] Meng, J., Tarjan, D., and Skadron, K. Dynamic Warp Subdivision for

Integrated Branch and Memory Divergence Tolerance. In Proceedings of the

37th Annual International Symposium on Computer Architecture (2010), ISCA

’10, ACM, pp. 235–246.

[70] Mittal, S. A survey of techniques for designing and managing CPU register

file. Concurrency and Computation: Practice and Experience 29, 4 (2017).

[71] Mittal, S., and Vetter, J. S. A Survey of Methods for Analyzing and

Improving GPU Energy Efficiency. ACM Comput. Surv. 47, 2 (Aug. 2014),

19:1–19:23.

[72] Mittal, S., and Vetter, J. S. A survey of cpu-gpu heterogeneous comput-

ing techniques. ACM Comput. Surv. (July 2015).

[73] Moore, G. E. Cramming more Components onto Integrated Circuits. Elec-

tronics 38, 8 (April 1965).

[74] Muchnick, S. S. Advanced Compiler Design and Implementation. Morgan

Kaufmann Publishers Inc., 1997.

130 REFERENCES

[75] Narasiman, V., Shebanow, M., Lee, C. J., Miftakhutdinov, R.,

Mutlu, O., and Patt, Y. N. Improving GPU Performance via Large

Warps and Two-level Warp Scheduling. In Proceedings of the 44th Annual

IEEE/ACM International Symposium on Microarchitecture (2011), MICRO-

44, ACM, pp. 308–317.

[76] Nickolls, J., and Dally, W. J. The GPU Computing Era. IEEE Micro

30, 2 (Mar. 2010), 56–69.

[77] Open Graphics Library. https://www.opengl.org/.

[78] Petit, S., Sahuquillo, J., Such, J. M., and Kaeli, D. Exploiting Tem-

poral Locality in Drowsy Cache Policies. In Proceedings of the 2Nd Conference

on Computing Frontiers (2005), CF ’05, ACM, pp. 371–377.

[79] Powell, M., Yang, S.-H., Falsafi, B., Roy, K., and Vijaykumar,

T. N. Gated-Vdd: A Circuit Technique to Reduce Leakage in Deep-submicron

Cache Memories. In Proceedings of the 2000 International Symposium on Low

Power Electronics and Design (2000), ISLPED ’00, ACM, pp. 90–95.

[80] Quintao Pereira, F. M., Rodrigues, R. E., and Sperle Campos,

V. H. A Fast and Low-overhead Technique to Secure Programs Against Integer

Overflows. In Proceedings of the 2013 IEEE/ACM International Symposium on

Code Generation and Optimization (CGO) (2013), CGO ’13, IEEE Computer

Society, pp. 1–11.

[81] Rhu, M., and Erez, M. CAPRI: Prediction of Compaction-adequacy for

Handling Control-divergence in GPGPU Architectures. In Proceedings of the

39th Annual International Symposium on Computer Architecture (2012), ISCA

’12, IEEE Computer Society, pp. 61–71.

[82] Rogers, T. G., O’Connor, M., and Aamodt, T. M. Cache-Conscious

Wavefront Scheduling. In Proceedings of the 2012 45th Annual IEEE/ACM

International Symposium on Microarchitecture (2012), MICRO-45, IEEE Com-

puter Society, pp. 72–83.

https://www.opengl.org/

REFERENCES 131

[83] Rogers, T. G., O’Connor, M., and Aamodt, T. M. Divergence-aware

Warp Scheduling. In Proceedings of the 46th Annual IEEE/ACM International

Symposium on Microarchitecture (2013), MICRO-46, ACM, pp. 99–110.

[84] Sadrosadati, M., Mirhosseini, A., Ehsani, S. B., Sarbazi-Azad, H.,

Drumond, M., Falsafi, B., Ausavarungnirun, R., and Mutlu, O.

LTRF: Enabling High-Capacity Register Files for GPUs via Hardware/Soft-

ware Cooperative Register Prefetching. In Proceedings of the Twenty-Third

International Conference on Architectural Support for Programming Languages

and Operating Systems (2018), ASPLOS ’18, ACM, pp. 489–502.

[85] Sami, M., Sciuto, D., Silvano, C., Zaccaria, V., and Zafalon, R.

Low-power data forwarding for VLIW embedded architectures. IEEE Transac-

tions on Very Large Scale Integration (VLSI) Systems 10, 5 (Oct 2002), 614–

622.

[86] Semeraro, G., Albonesi, D. H., Dropsho, S. G., Magklis, G.,

Dwarkadas, S., and Scott, M. L. Dynamic Frequency and Voltage Con-

trol for a Multiple Clock Domain Microarchitecture. In Proceedings of the 35th

Annual ACM/IEEE International Symposium on Microarchitecture (2002), MI-

CRO 35, IEEE Computer Society Press, pp. 356–367.

[87] Seth, A., Keskar, R. B., and Venugopal, R. Algorithms for Energy

imization Using Processor Instructions. In Proceedings of the 2001 International

Conference on Compilers, Architecture, and Synthesis for Embedded Systems

(2001), CASES ’01, ACM, pp. 195–202.

[88] Sethia, A., Jamshidi, D. A., and Mahlke, S. Mascar: Speeding up

GPU warps by reducing memory pitstops. In 2015 IEEE 21st International

Symposium on High Performance Computer Architecture (HPCA) (Feb 2015),

pp. 174–185.

[89] Sethia, A., and Mahlke, S. Equalizer: Dynamic Tuning of GPU Resources

for Efficient Execution. In Proceedings of the 47th Annual IEEE/ACM Inter-

national Symposium on Microarchitecture (2014), MICRO-47, IEEE Computer

Society, pp. 647–658.

132 REFERENCES

[90] Tarjan, D., and Skadron, K. On demand register allocation and dealloca-

tion for a multithreaded processor, June 30 2011. US Patent App. 12/649,238.

[91] Weiser, M., Welch, B., Demers, A., and Shenker, S. Scheduling

for Reduced CPU Energy. In Proceedings of the 1st USENIX Conference on

Operating Systems Design and Implementation (1994), OSDI ’94, USENIX As-

sociation.

[92] Xiang, P., Yang, Y., and Zhou, H. Warp-level divergence in GPUs:

Characterization, impact, and mitigation. In 2014 IEEE 20th International

Symposium on High Performance Computer Architecture (HPCA) (Feb 2014),

pp. 284–295.

[93] Xie, F., Martonosi, M., and Malik, S. Compile-time Dynamic Voltage

Scaling Settings: Opportunities and Limits. In Proceedings of the ACM SIG-

PLAN 2003 Conference on Programming Language Design and Implementation

(2003), PLDI ’03, ACM, pp. 49–62.

[94] Xie, X., Liang, Y., Li, X., Wu, Y., Sun, G., Wang, T., and Fan,

D. Enabling Coordinated Register Allocation and Thread-level Parallelism

Optimization for GPUs. In Proceedings of the 48th International Symposium

on Microarchitecture (2015), MICRO-48, ACM, pp. 395–406.

[95] Yang, S.-H., Falsafi, B., Powell, M. D., Roy, K., and Vijaykumar,

T. N. An Integrated Circuit/Architecture Approach to Reducing Leakage in

Deep-Submicron High-Performance I-Caches. In Proceedings of the 7th Interna-

tional Symposium on High-Performance Computer Architecture (2001), HPCA,

IEEE Computer Society, pp. 147–157.

[96] Yang, Y., Xiang, P., Mantor, M., Rubin, N., and Zhou, H. Shared

Memory Multiplexing: A Novel Way to Improve GPGPU Throughput. In

Proceedings of the 21st International Conference on Parallel Architectures and

Compilation Techniques (2012), PACT ’12, ACM, pp. 283–292.

[97] Yoon, M. K., Kim, K., Lee, S., Ro, W. W., and Annavaram, M.

Virtual Thread: Maximizing Thread-level Parallelism Beyond GPU Schedul-

REFERENCES 133

ing Limit. In Proceedings of the 43rd International Symposium on Computer

Architecture (2016), ISCA ’16, IEEE Press, pp. 609–621.

[98] Zhang, M., and Asanović, K. Fine-grain CAM-tag Cache Resizing Using

Miss Tags. In Proceedings of the 2002 International Symposium on Low Power

Electronics and Design (2002), ISLPED, ACM, pp. 130–135.

134 REFERENCES

Publications

1. Vishwesh Jatala, Jayvant Anantpur, and Amey Karkare. Improving GPU
Performance Through Resource Sharing. In Proceedings of the 25th ACM In-
ternational Symposium on High-Performance Parallel and Distributed Com-
puting (HPDC), Kyoto, Japan, 2016, ACM, pp. 203-214.

2. Vishwesh Jatala, Jayvant Anantpur, and Amey Karkare. Resource Shar-
ing for GPUs. In 14th International Symposium on Code Generation and
Optimization (CGO, Poster Track), Barcelona, Spain, 2016.

3. Vishwesh Jatala, Jayvant Anantpur, and Amey Karkare. Scratchpad Shar-
ing in GPUs. In ACM Transactions on Architecture and Code Optimization
(TACO). 14, 2 (May 2017), 15:1-15:29.

4. Vishwesh Jatala, Jayvant Anantpur, and Amey Karkare. GREENER: A
Tool for Improving Energy Efficiency of GPU Register File. In 24th IEEE In-
ternational Conference on High Performance Computing, Data, and Analytics,
Student Research Symposium (HiPC, SRS), Jaipur, India, 2017.

5. Vishwesh Jatala, Jayvant Anantpur, and Amey Karkare. Reducing GPU
Register File Energy. In 24th International European Conference on Parallel
and Distributed Computing (Euro-Par), Torino, Italy 2018.

	Abstract
	Acknowledgement
	List of Tables
	List of Figures
	List of Abbreviations
	1 Introduction
	1.1 Problem Description
	1.2 Thesis Contributions
	1.2.1 Resource Sharing
	1.2.2 Compiler Optimizations for Scratchpad Sharing
	1.2.3 Reducing Leakage Energy of Register File

	1.3 Overview of GPU Architecture
	1.3.1 GPU Architecture and Programming Model
	1.3.2 Power Model

	1.4 Thesis Organization

	2 Improving GPU Performance Through Resource Sharing
	2.1 Introduction
	2.1.1 Resource Underutilization in GPUs
	2.1.2 Our Solution: Resource Sharing

	2.2 Resource Sharing
	2.2.1 Register Sharing
	2.2.2 Scratchpad Sharing
	2.2.3 Can Resource Sharing Cause a Deadlock?
	2.2.4 Computing the Number of Effective Thread Blocks

	2.3 Optimizations
	2.3.1 Scheduling Owner Warp First (OWF)
	2.3.2 Unrolling and Reordering of Register Declarations
	2.3.3 Dynamic Warp Execution

	2.4 Hardware Requirement
	2.4.1 Storage Units Required for Register Sharing
	2.4.2 Storage Units Required for Scratchpad Sharing

	2.5 Experiments and Analysis
	2.5.1 Analyzing Benchmarks that are Applicable to Resource Sharing
	2.5.2 Analyzing Benchmarks that are not Applicable to Resource Sharing

	2.6 Summary

	3 Improving Scratchpad Sharing with Compiler Optimizations
	3.1 Introduction
	3.1.1 The Need for Compiler Optimizations
	3.1.2 Contributions

	3.2 Compiler Optimizations
	3.2.1 Minimizing Shared Scratchpad Region
	3.2.2 Implementation of relssp Instruction
	3.2.3 Algorithm for Optimal Placement of relssp Instruction

	3.3 Analysis of Compiler Optimizations
	3.4 Experimental Evaluation
	3.4.1 Analyzing Benchmarks that are Limited by Scratchpad Memory
	3.4.2 Analyzing Benchmarks that are not Limited by Scratchpad Memory

	3.5 Summary

	4 Optimizations for Reducing Register File Leakage Energy
	4.1 Introduction
	4.1.1 Opportunities to Reduce Register Leakage Energy
	4.1.2 Our Solution: GReEneR

	4.2 GReEneR
	4.2.1 Compiler Analysis
	4.2.2 Encoding Power States
	4.2.3 Run-time Optimization
	4.2.4 Hardware Support

	4.3 Experimental Analysis
	4.3.1 Comparing Register Leakage Power
	4.3.2 Performance Overhead Using Simulation Cycles
	4.3.3 Comparing Register Leakage Energy
	4.3.4 Effectiveness of Optimizations
	4.3.5 Analyzing Hardware Overheads
	4.3.6 Effect of Wake up Latency
	4.3.7 Leakage Energy Savings with Routing
	4.3.8 Leakage Energy Savings with Different Schedulers
	4.3.9 Leakage Energy with Various Technologies
	4.3.10 Comparing Leakage Energy for Various Threshold Distances

	4.4 Summary

	5 Related Work
	5.1 Improving GPU Performance
	5.2 Improving Energy Efficiency

	6 Conclusions and Future Work
	6.1 Future Directions
	6.1.1 Short-term Research Directions
	6.1.2 Long-term Research Directions

	References
	Index
	Publications

