
A Study of Graph Analytics for Massive Datasets on Distributed Multi-GPUs

Vishwesh Jatala

The University of Texas at Austin
Austin, Texas, USA

vishwesh.jatala@austin.utexas.edu

Roshan Dathathri

The University of Texas at Austin
Austin, Texas, USA

roshan@cs.utexas.edu

Gurbinder Gill

The University of Texas at Austin
Austin, Texas, USA
gill@cs.utexas.edu

Loc Hoang

The University of Texas at Austin
Austin, Texas, USA
loc@cs.utexas.edu

V. Krishna Nandivada

IIT Madras
Chennai, Tamil Nadu, India

nvk@iitm.ac.in

Keshav Pingali

The University of Texas at Austin
Austin, Texas, USA

pingali@cs.utexas.edu

Abstract—There are relatively few studies of distributed
GPU graph analytics systems in the literature and they are
limited in scope since they deal with small data-sets, consider
only a few applications, and do not consider the interplay be-
tween partitioning policies and optimizations for computation
and communication.

In this paper, we present the first detailed analysis of graph
analytics applications for massive real-world datasets on a
distributed multi-GPU platform and the first analysis of strong
scaling of smaller real-world datasets. We use D-IrGL, the
state-of-the-art distributed GPU graph analytical framework,
in our study. Our evaluation shows that (1) the Cartesian
vertex-cut partitioning policy is critical to scale computation
out on GPUs even at a small scale, (2) static load imbalance
is a key factor in performance since memory is limited on
GPUs, (3) device-host communication is a significant portion
of execution time and should be optimized to gain performance,
and (4) asynchronous execution is not always better than bulk-
synchronous execution.

Keywords-Graphics Processing Units, Graph Processing, Dis-
tributed Systems, Performance.

I. INTRODUCTION

A number of frameworks have been proposed to simplify

the implementation of graph algorithms on GPUs. They

can be categorized broadly into two groups: (i) frameworks

for single-host multi-GPU systems, such as Gunrock [1]

and Groute [2], and (ii) frameworks for multi-host multi-

GPU systems, such as Lux [3] and D-IrGL [4], [5]. These

systems must address a common set of challenges such as

partitioning of graphs among GPUs, implementing efficient

communication among GPUs, and ensuring efficient com-

putation on each GPU.

A recent study [6] has analyzed breadth-first search on

distributed GPUs using synthetic graphs. However, it is not

clear how the results of the study can be extended to real-

world graphs and other applications. In particular, studies

on distributed CPUs [7], [8] have shown that (1) unlike

synthetic power-law graphs, large real-world graphs have a

relatively high diameter, so good performance on synthetic

graphs does not always translate to good performance on

real-world graphs, (2) different applications may perform

very differently, and (3) performance is very sensitive to the

policy used to partition the graph. No study of these issues

has been performed on distributed GPUs. In addition, there

are several computation and communication optimizations

that have been shown to be useful for distributed CPUs [4],

[5], but their interplay on distributed GPUs has not been

studied, especially for different partitioning policies.
In this paper, we present the first detailed analysis of

graph analytics applications for massive real-world datasets

on a distributed multi-GPU platform. For the study, we

use the state-of-the-art distributed GPU graph analytical

framework, D-IrGL [4], [5]. D-IrGL is built using the

Gluon communication substrate [4] and the IrGL compiler

framework [9]. D-IrGL provides a variety of partitioning

policies using a partitioner called CuSP [8]. It supports both

bulk-synchronous and bulk-asynchronous [5] execution. We

analyze a number of applications in D-IrGL using different

graph partitioning policies, namely edge-balanced edge-cut

(IEC/OEC) [3], hybrid vertex-cut (HVC) [10], and Cartesian

vertex-cut (CVC) [11]. We analyze the performance of

these applications in D-IrGL using different computation

and communication optimizations. We also evaluate applica-

tions using Lux, the only other distributed graph analytical

framework on GPUs, and analyze performance differences

between Lux and D-IrGL.
Our study offers key lessons for designers and users of

graph analytical frameworks for multiple GPUs as well as

designers of graph partitioning policies.

• Cartesian vertex-cut (CVC) is critical to scale the com-

putation to a large number of GPUs. We observe that

CVC almost always outperforms the other partitioning

policies on 16 or more GPUs. This is in contrast to prior

studies on CPUs (with bulk-synchronous execution) [7],

which found that edge-cuts were typically better at such

small scale. This is important as single-host multi-GPU

machines are now being designed with 16 GPUs (such

as NVIDIA DGX2), but existing single-host multi-

84

2020 IEEE International Parallel and Distributed Processing Symposium (IPDPS)

1530-2075/20/$31.00 ©2020 IEEE
DOI 10.1109/IPDPS47924.2020.00019

GPU graph analytics frameworks other than D-IrGL

currently do not support vertex-cuts.

• Prior studies on CPUs [7] have found that static load

balancing metrics, such as the number of edges in each

partition, are not strongly correlated to dynamic load

balance since the number of active vertices changes

unpredictably from round to round. However, our study

shows that these static load metrics are important

for multi-GPU execution for a different reason: they

determine the amount of memory needed to store the

graph in GPU memory, and imbalanced partitions may

prevent the computation from running at all. Therefore

statically balanced partitions are important for multi-

GPU machines.

In addition, our study identifies several improvements that

can be made to D-IrGL.

• Communication between devices and hosts consumes a

significant portion of the execution time. Performance

can be improved by overlapping communication with

computation and by communicating directly between

devices (using NVIDIA GPUDirect).

• In a few cases, bulk-asynchronous execution performs

worse than bulk-synchronous execution. Performance

can be improved by dynamically throttling the degree

of asynchronous execution.

The rest of the paper is organized as follows. Section II

provides background on graph analytics and multi-GPU

architectures. Section III provides an overview of distributed

GPU graph analytics. Section IV describes our experimen-

tal methodology. Section V presents our evaluation and

analysis. Related work and conclusions are presented in

Sections VI and VII, respectively.

II. BACKGROUND

A. Graph Analytics

A graph G = (V,E) consists of a set of vertices V and

a set of edges E. Each vertex and/or edge in the graph is

associated with one or more labels representing the state of

the algorithm. For the graph analytical applications studied

in this paper, algorithms read and update the state in rounds.

Algorithm execution ends when some termination condition

is met, such as when a bound on the number of iterations

is reached or when no vertex label can be updated.

State updates can be represented abstractly as an opera-
tor [12]. Operators are applied to active vertices in the graph,

and an application reads and updates labels in a small region

in the neighborhood of the active vertex. Vertex programs
are programs in which an operator’s neighborhood consists

only of immediate neighbors of the active vertex. Push-style

vertex programs read a vertex’s label and update the labels of

the neighbors of that vertex, while pull-style vertex programs

read the neighbor’s labels and update the label of the active

vertex.

Host 1

PCIe Bus

NVIDIA
Tesla P100

GPU1

NVIDIA
Tesla P100

GPU2

Host 32

PCIe Bus

NVIDIA
Tesla P100

GPU63

NVIDIA
Tesla P100

GPU64

Intel Omni-Path
Interconnect

CPU

DRAM

.....Device
Memory

Device
Memory

Device
Memory

Device
Memory

CPU

DRAM

Figure 1: A typical multi-host multi-GPU setup.

B. Multi-GPU Architectures

Figure 1 illustrates the architecture of a typical multi-

GPU system spanning one or more hosts connected using

a network interface such as Intel Omni-Path or Mellanox

FDR Infiniband. Each CPU may be connected to one or more

GPUs using an interface such as a PCI Express bus. Depend-

ing on the network topology, GPUs within the same host can

communicate directly (e.g., with NVIDIA GPUDirect Peer

to Peer) or via the host. Similarly, GPUs from different hosts

can communicate directly (e.g., NVIDIA GPUDirect RDMA

technology) or via the hosts.

A typical GPU architecture consists of a set of stream-

ing multiprocessors (SMs) that maintain several on-chip

resources: registers, ALUs, shared memory, and L1 cache.

The GPU also maintains a global (device) memory and L2

cache which can be accessed by any SM.

To parallelize a program on a single GPU, a programmer

performs the following tasks: (1) allocate the memory on the

host using malloc or cudaMallocHost (to allocate in pinned

memory), (2) transfer the data from the host to the GPU

device using cudaMemcpy, (3) perform the computation on

GPU, and (4) transfer the data back from GPU to host

using cudaMemcpy. The region of the program that needs

to be parallelized on the GPU is specified using a function

called kernel. The kernel is invoked with a specific number

of thread blocks (also known as Cooperative Thread Array

(CTA)) and a specific number of threads in each thread

block. The number of thread blocks that reside on each

SM depends on the number of available resources and the

resource requirement of each thread block. The threads of

a thread block are grouped into sets of 32 threads called

a warp, and all the threads in a warp execute program

instructions in a SIMT manner.

III. GRAPH ANALYTICS FOR DISTRIBUTED GPUS

In this section, we first give an overview of distributed

GPU graph analytics (Section III-A) and their distributed ex-

ecution model (Section III-B). We briefly describe the poli-

cies and heuristics in partitioning the graph (Section III-C).

We then briefly describe communication among those GPUs

85

(Section III-D) and computation optimization techniques on

each GPU (Section III-E).

A. Overview

To process a graph on multiple GPUs, the graph is

partitioned among GPUs. Vertices can be partitioned among

GPUs, in which case communication is required to access

the labels of remote vertices. Alternatively, a partitioner can

partition edges and create vertex proxies on each GPU for

the endpoints of the edges mapped to it. As a result, multiple

proxies could exist for the same vertex; the average number

of proxies per vertex is called the replication factor. For

each vertex in the original graph, one proxy is anointed

as the master proxy, and the other proxies are said to be

mirror proxies. Intuitively, master proxies are responsible for

computing the canonical values of vertex labels and com-

municating them to mirror proxies, which act like cached

copies of data from master proxies.

Each GPU processes the active vertices in its partition.

Graph algorithms are resilient to stale reads, so proxy labels

can be synchronized eventually rather than at every write as

is done in cache-coherent architectures. Multi-GPU graph

analytical frameworks transparently handle graph partition-

ing and communication among the GPUs and incorporate

techniques to optimize computation on each GPU. Differ-

ences among frameworks arise in the ways in which they

implement these functionalities. There are several single-

host multi-GPU graph analytical frameworks (restricted to

multiple GPUs on a single machine) like Gunrock [1] and

Groute [2]. However, as far as we know, there are only

two multi-host multi-GPU graph analytical frameworks: D-

IrGL [4], [5] and Lux [3]. In this study, we evaluate and

analyze both D-IrGL and Lux.

B. Distributed Execution Model

In multi-GPU implementations, communication is re-

quired to synchronize the state of the graph. This can be

done bulk-synchronously or asynchronously.

Bulk-synchronous parallel (BSP) execution is divided into

rounds. Each BSP round has a computation phase followed

by a communication phase. In the computation phase, each

GPU operates on its partition of the graph and updates the

labels on its local proxies. At the end of the phase of local

computation, a communication phase occurs in which these

updates are communicated to the GPUs that need them. Most

multi-GPU systems, including Lux, use BSP-style execution.

In asynchronous parallel execution, there is no notion of

global rounds; instead, each GPU performs computation and

communication independently. In this paper, we focus on

an asynchronous model called bulk-asynchronous parallel
(BASP) [5] execution. Execution occurs in local rounds,

and in each local round, each GPU alternates between

computation on its partition of the graph and sending or

receiving messages from other GPUs. There is no global

Ma
st
er
 V
er
ti
ce
s

Destination Vertices
2

5

1
1

3

2

4

2
2

4

1
1

3

4 43

1
1

3

3

2
2

4

4

1
1

3

3

2
2

4

4

5
5
7

7

6
6
8

8

5
7

7

6
6
8

8

5
5
7

7

6
6
8

8

5
5
7

7

6
6
8

8

3

1
2

3

4

5
6
7

8

So
ur
ce
 V
er
ti
ce
s

Figure 2: Cartesian Vertex-Cut (CVC) for 8 devices [7].

synchronization or coordination among the GPUs. D-IrGL

supports both BASP and BSP execution and uses BASP by

default if the benchmark can be run asynchronously.

C. Graph Partitioning

Partitioning policies are generally divided into edge-cut

and vertex-cut policies. An incoming (or outgoing) edge-cut

assigns all incoming (or outgoing) edges of a vertex to the

same partition. The assignment of a vertex to a partition may

vary among edge-cuts. For example, an edge-balanced edge-

cut [3] assigns vertices to balance the number of edges across

partitions, while more complex edge-cuts such as XtraPulp’s

edge-cut [13] assign vertices based on neighborhood locality

and load balance. We use the term IEC (or OEC) to refer

to edge-balanced incoming (or outgoing) edge-cut in this

paper. Unlike an edge-cut, a vertex-cut has no restriction on

which partition an edge is assigned to. Many policies exist

for vertex cuts, such as the hybrid vertex-cut (HVC) [10]

and the Cartesian vertex-cut (CVC) [11], [4], which is a 2D

cut of the adjacency matrix of the graph (see Figure 2).

Both computation and communication may be affected by

the choice of partitioning policy. Computation is affected by

the differences in the partitions on each host: for example,

one host may have to do more work than other hosts. In BSP-

style execution like in Lux, where all hosts must occasionally

synchronize before continuing computation, these straggler

hosts can bottleneck execution. In BASP-style execution

supported by D-IrGL, the impact of stragglers on execution

time may be reduced. Communication is affected by the

required synchronization of proxy vertices across all hosts.

The distribution of master and mirror proxies can signifi-

cantly impact the communication time.

D-IrGL is the only multi-GPU graph analytical framework

that supports arbitrary partitioning policies, including vertex-

cuts. All other frameworks whether single-host or multi-host

support only edge-cuts; in particular, Lux [3] supports only

IEC. In this study, we will analyze Lux with IEC and D-

IrGL with OEC, IEC, HVC, and CVC.

86

D. Communication Optimizations

To communicate between two devices, all existing multi-

GPU frameworks transfer the message from the sending

GPU to the sender host’s to the receiver’s host, which finally

transfers it to the receiver GPU; in other words, the hosts act

as a router for the device. Communication can be optimized

in several ways. For example, Lux takes advantage of pinned

memory to communicate updates among GPUs on the same

machine. We will briefly describe two other optimizations.

1) Partition-Specific Optimizations: A reduction from

mirror to master proxies followed by a broadcast from

master to mirror proxies on all hosts is sufficient to syn-

chronize proxies regardless of the partitioning policy used,

but it is possible to optimize the required communication by

leveraging knowledge of what the computation requires as

well as the structural invariants of a partitioning policy [4].

To illustrate this, consider a graph application that only reads

data from the source of an edge and only writes data to

a destination of an edge. If data only needs to be read at

a source of an edge, then only proxies that have outgoing

edges need to have the most up-to-date value from master.

Therefore, if a partitioning policy assigns all outgoing edges

of a vertex to the master proxy (i.e., outgoing edge-cut),

there is no need to broadcast the master proxy’s value to
mirror proxies as mirror proxies do not read the value: it

suffices to reduce written values from mirror proxies to the

master as only the master proxy needs to read it.

Structured vertex-cuts such as CVC can leverage their

invariants to avoid all-to-all reduce and broadcast as well. To

understand this, consider the adjacency matrix of the graph.

Figure 2 illustrates CVC [7]. In CVC, the rows (outgoing

edges) are first partitioned in a blocked fashion (labeled

“masters” in Figure 2). The columns (incoming edges) are

blocked the same way as rows. The matrix is then placed into

a grid: in this example, it is a 4×2 grid (for 8 hosts). Finally,

within each grid row, the blocks are distributed in a cyclic

fashion to the hosts that are in that grid row. For example, the

first grid row contains hosts 1 and 2, so blocks are distributed

between the two in that grid row. This partitioning places

mirror proxies with outgoing edges on the same grid row as

its master proxy (conversely, a mirror proxy with incoming

edges is on the same grid column as its master proxy). Since

all proxies with outgoing edges are along the grid row, it

suffices to broadcast only to hosts in the grid row (only

proxies with outgoing edges need the updated value from

the master), and since all proxies with incoming edges are

along the grid column, it suffices to reduce only with hosts
in the grid column (only proxies with incoming edges will

have updates to be reduced to the master). This removes

all-to-all communication [7].

D-IrGL transparently optimizes communication based on

the structural invariants in the policy while also supporting

arbitrary policies. As all other frameworks support only

edge-cuts, they optimize communication for that specific

structural invariant.

2) Update-Driven Optimization: Different proxies are

updated in different rounds as the set of active vertices

changes dynamically. For example, no proxies of a vertex

may be updated in a given round, so no synchronization

needs to occur among those proxies in that round. D-

IrGL tracks updates to proxies and only synchronizes the

updated values, while eliding translating between global

and local addresses of the proxies during communication1.

Tracking updates to proxies has its own overheads, so Lux

synchronizes all shared data in every round (consequently,

address translation is straightforward).

E. Computation Optimizations

Once the graph is partitioned and loaded on the GPU,

each GPU performs computation on its portion of the graph.

In each local round of BSP or BASP, each GPU visits

active vertices in the graph, distributes the edges of those

vertices among threads, and applies the operator. Graph

frameworks have explored a number of implementations for

computation [14], and we briefly describe some of them

below.

1) Visiting Active Vertices: There are two high-level

strategies for visiting active vertices in each round: topology-

driven and data-driven [15]. In topology-driven execution, all

the graph vertices are assumed to be active in each round,

and the operator is applied to all of them. In data-driven

execution, the operator is applied only to a subset of vertices

where there might be work to do. Intuitively, data-driven

execution is preferable if only a small subset of the vertices

is active in a round.

2) Distributing Edges to Threads: Given the vertices that

must be processed in a round, the computational load of

applying the operator to these vertices must be distributed

among the GPU threads. In power-law graphs, vertices

may have very different degrees, so distributing active

vertices among threads may lead to poor load balance. D-

IrGL [4] supports the TWC (Thread/Warp/CTA Expansion)

strategy [16] which leverages the architectural features to

distribute the load. Depending on the degree of a vertex, it

assigns the edges of a vertex to threads of a thread block, to

threads of a warp, or to a single thread. This can handle load

imbalance problems that are present within the thread block,

but it does not handle the load imbalance among the thread

blocks. D-IrGL by default uses an Adaptive Load Balancer

(ALB) [17] strategy that assigns the edges of a very high

degree vertex among thread blocks and uses the TWC to

distribute the edges of all the other vertices. In contrast,

1Generally, a communication framework sends the global ID of the vertex
along with the updated data so the receiver can convert the global ID to a
local ID. Gluon elides the sending of these global addresses by memoizing
the send order so that each host can identify data based on the order it is
received.

87

Table I: Inputs and their key properties.

rmat23 orkut indochina04 twitter50 friendster uk07 clueweb12 uk14 wdc14

|V | 8.3M 3.1M 7.4M 51M 66M 106M 978M 788M 1,725M
|E| 13.4M 234M 194M 1,963M 1,806M 3,739M 42,574M 47,615M 64,423M
|E|/|V | 16 76 26 38 28 35 43.5 60.4 37
max Dout 35M 33,313 6,985 779,958 5,214 15,402 7,447 16,365 32,848
max Din 9,776 33,313 256,425 3.5M 5,214 975,418 75M 8.6M 46M
Approx. Diameter 3 6 2 12 21 115 501 2498 789
Size (GB) 1.1 1.8 1.6 16 28 29 325 361 493

Lux distributes the edges of each vertex (irrespective of its

degree) to threads within a thread block.

IV. EXPERIMENTAL SETUP

We first describe the multi-GPU platforms (Section IV-A)

and then the multi-GPU frameworks that we study on these

platforms (Section IV-B). We then describe our experimental

methodology (Section IV-C).

A. Multi-GPU Platforms

We study the performance of the multi-GPU graph analyt-

ical frameworks on two experimental platforms: a multi-host

multi-GPU production cluster and a single-host multi-GPU

system. The machine used for the multi-host experiments

is the Bridges cluster at the Pittsburgh Supercomputing

Center [18]. We used up to 64 NVIDIA Tesla P100 GPUs

located on 32 distributed machines with 128GB DRAM

each. Each machine has 2 Intel Broadwell E5-2683 v4 CPUs

with 16 cores per CPU, and they are connected through the

Intel Omni-Path Architecture. Each P100 GPU has 16GB

of memory. We call the single-host multi-GPU system as

Tuxedo. Tuxedo has 2 Intel Xeon E5-2650 v4 CPUs with

12 cores and 96 GB DRAM per CPU. It contains a total of

6 GPUs: the first 4 GPUs are NVIDIA Tesla K80 and the

other 2 are NVIDIA GeForce GTX 1080. Each K80 GPU

has 12GB of memory, and each GTX 1080 GPU has 8GB

of memory.

We use five benchmarks in our experiments: breadth-

first search (bfs), weakly connected components (cc), k-

core (kcore), pagerank (pr), and single-source shortest path

(sssp). These benchmarks are used widely to measure the

performance of graph frameworks [1], [2], [3], [4], [5], [7].

In our experiments, the vertex with the highest out-degree

is used as the source vertex for bfs and sssp. For all inputs,

we add randomized edge-weights. Algorithms are run to

convergence. The reported execution time of applications

excludes the graph loading, partitioning, and construction

time2. Reported runtime numbers are an average of three

runs.

Table I lists the inputs used in our evaluation and their

properties. The rmat23 graph is a randomized scale-free

2Comparing graph partitioning time is not our focus. Graph partitioning
is performed on CPUs; in practice, graphs can be partitioned once,
and in-memory representations of the partitions can be written to disk.
Applications can then load these partitions directly.

graph generated using a rmat generator [19]; orkut, friend-

ster [20], and twitter50 [21] are social network graphs;

indochina04, uk07, clueweb12, uk14 [22], [21], [23], and

wdc14 [24] are web-crawls.

All the graphs have a power-law degree distribution. Such

graphs typically have a low diameter, but large web-crawls

like uk14 have a non-trivial diameter due to long tails. The

inputs in Table I are divided into three categories: small

graphs are used for single-host multi-GPU experiments on

up to 6 GPUs whereas medium and large graphs are used

for multi-host multi-GPU experiments on up to 64 GPUs.

B. Multi-GPU Graph Analytical Frameworks

We experiment with four multi-GPU graph analytical

frameworks: D-IrGL [4] and Lux [3], which support both

single-host multi-GPU and multi-host multi-GPU architec-

tures, and Gunrock [1] and Groute [2], which support only

single-host multi-GPU architectures. D-IrGL and Lux are

the only distributed GPU graph analytical frameworks. We

chose Gunrock because it is a widely used and stable single-

host multi-GPU framework and Groute because it is the only

framework other than D-IrGL that supports asynchronous

communication between GPUs. On Tuxedo, we evaluated

all the four frameworks using up to 6 GPUs. On Bridges,

we evaluated D-IrGL and Lux on up to 64 GPUs.

D-IrGL is built using the Gluon communication sub-

strate [4] with the CUDA code generated by the IrGL

compiler [9]. The IrGL compiler includes computation op-

timizations like the TWC [16] and ALB [17] load balanc-

ing schemes. D-IrGL provides both push-style data-driven

implementations and pull-style topology-driven implementa-

tions for each benchmark. We use topology-driven execution

for pr (residual based algorithm) and data-driven execution

for the rest.

Lux is built using CUDA on top of the Legion [25] and

GASNet [26] runtimes. We use only cc and pr in Lux as

the others were incorrect or not available. They use data-

driven implementation for cc and topology-driven for pr

(recomputes the rank of each vertex in each round). pr on

Lux does not have a run until convergence option, so we

ran it for the same number of rounds executed by pr in

D-IrGL. Lux uses its in-built IEC partitioning policy (we

observed that it does not do dynamic repartitioning and we

have notified the authors).

88

Gunrock [1] extends a single GPU graph processing

library [27]. It includes LB load balancing scheme (that

balances the edges of a vertex, irrespective of its degree,

among all thread blocks) and application specific optimiza-

tions for sssp and cc. It also provides direction-optimizing

traversal for bfs. It provides a set of pre-defined partitioned

policies. We choose the default random partitioning strategy

as recommended by Gunrock. Its pr produced incorrect

output (the pagerank values did not match those produced

by pr in the other frameworks), so we omit it in our

evaluation. Gunrock uses data-driven execution for all the

other benchmarks.

Groute [2] leverages the underlying multi-GPU network

topology and low-level networking features, and it provides

programming constructs for writing asynchronous multi-

GPU programs. Groute uses data-driven algorithms for all

the benchmarks except cc (unlike other frameworks, its cc

uses a pointer-jumping algorithm) and uses the edge-cut

partitioning provided by METIS [28].

C. Evaluation Methodology

We chose benchmarks implemented in the D-IrGL frame-

work. Some of these benchmarks have been implemented

in Lux, so we analyze the key performance differences

between Lux and D-IrGL. Since there are many single-host,

multi-GPU frameworks like Gunrock and Groute, it is also

interesting to study the performance of D-IrGL on single-

machine platforms. For these studies, we use smaller graphs.

As Lux supports only IEC, we first compare it with

D-IrGL using IEC. Although both produce edge-balanced

edge-cuts, the ones produced by D-IrGL may be different

from that of Lux. Nevertheless, we modified D-IrGL to

use the same partitions that are produced by Lux if it was

possible (i.e., no crash as well as access to Lux partitions

used). We analyzed different optimizations and variants in

D-IrGL:

1) Computation optimization — TWC vs. ALB: D-IrGL

supports both TWC and ALB load balancing schemes,

but uses ALB by default. ALB is expected to be at

least as good as TWC, and TWC is expected to be

at least as good as the load balancing scheme used

in Lux. The performance at scale is typically limited

by communication, so the difference between them is

expected to be small at scale.

2) Communication optimization — AS vs. UO: Lux

synchronizes all shared (AS) proxies irrespective of

whether they are updated or not. D-IrGL has an option

to use AS, but by default, it tracks updates and synchro-

nizes the updated values only (UO). UO is expected to

be at least as good as AS, although tracking updates

has overheads.

3) Execution model optimization — Sync vs. Async: Lux

uses bulk-synchronous (Sync) execution, while D-IrGL

Table II: Fastest execution time (sec) of all frameworks

using the best-performing number of GPUs on the single-

host multi-GPU system, Tuxedo (GPU count in parentheses).

Benchmark Platform rmat23 orkut indochina04

bfs

Gunrock 0.02 (1) 0.03 (6) 0.00 (6)
Groute 0.56 (1) 0.06 (6) 0.01 (1)
Lux - - -
D-IrGL (IEC) 0.03 (6) (IEC) 0.06 (6) (IEC) 0.01 (6)

cc

Gunrock 0.21 (2) 0.13 (6) 0.52 (6)
Groute 0.06 (6) 0.04 (6) 0.08 (6)
Lux 0.48 (6) 0.22 (4) 0.69 (4)
D-IrGL (HVC) 0.08 (6) (IEC) 0.01 (6) (CVC) 0.11 (6)

pr

Gunrock - - -
Groute 25.06 (2) 3.82 (6) 1.06 (4)
Lux 1.30 (4) 2.74 (4) 4.09 (4)
D-IrGL (IEC) 0.5 (6) (OEC) 2.76 (6) (OEC) 1.33 (6)

sssp

Gunrock 0.19 (6) 0.28 (6) 0.01 (6)
Groute 1.02 (4) 0.07 (6) 0.05 (1)
Lux - - -
D-IrGL (IEC) 0.03 (6) (CVC) 0.16 (6) (IEC) 0.02 (4)

Table III: Maximum memory usage (in GBs) across 6 GPUs

of all frameworks for cc on 6 GPUs of the single-host multi-

GPU system, Tuxedo (Lux uses a static memory allocation).

System rmat23 orkut indochina04

Gunrock 1.29 0.75 1.24
Groute 0.50 0.42 0.74
Lux 5.85 5.85 5.85
D-IrGL 0.36 0.21 0.33

uses bulk-asynchronous (Async) execution by default

as it is expected to better than Sync.

Some of these optimizations have been studied separately in

prior work [17], [4], [5], but it is not clear how they interact

with each other and with different partitioning policies. In

particular, their impact on large datasets at scale has not

been studied. Studying each combination of these would

be prohibitive, so we study them orthogonally. We start

with the baseline variant (Var1) — TWC + AS + Sync.

Then, we study ALB + AS + Sync (Var2) and ALB + UO

+ Sync (Var3). Finally, we study the variant with all the

optimizations — ALB + UO + Async (Var4, which is the

default in D-IrGL). We then examine the effect of changing

the partitioning policy.

V. EXPERIMENTAL RESULTS

We first present results for single-host multi-GPU frame-

works (Section V-A). Then, we analyze the results for multi-

host multi-GPU frameworks (Sections V-B and V-C).

A. Single-Host Multi-GPU Graph Analytics

We evaluate all benchmarks in all the frameworks using

the small graphs on 1, 2, 4, and 6 GPUs of Tuxedo. Table II

shows the best performance of each framework. The best-

performing number of GPUs is in parentheses (less than

6 implies that the framework did not scale). Gunrock is the

only framework that uses direction-optimization for bfs, and

89

friendster twitter50 uk07

bfs
cc

kcore
pagerank

sssp

2 4 8 16 32 64 2 4 8 16 32 64 2 4 8 16 32 64

0.25
0.50
1.00
2.00
4.00

1

8

64

0.25

1.00

4.00

16.00

8

32

128

512

0.5

1.0

2.0

4.0

Number of GPUs

E
xe

cu
tio

n
tim

e
(s

ec
)

Lux
Var1
Var2
Var3
Var4

Figure 3: Strong scaling (log-log scale) of D-IrGL variants

and Lux for medium graphs on Bridges (2 GPUs share a

machine).

Groute uses pointer-jumping algorithm for cc. Consequently,

they have an algorithmic advantage. Nonetheless, D-IrGL is

either competitive with the other frameworks or outperforms

them on this single-host multi-GPU platform. Thus, D-IrGL

is a suitable framework to study the scaling out behavior of

graph analytics on multi-host multi-GPUs.

We observed that we were able to run D-IrGL for the

medium graphs on Tuxedo, whereas all the other frameworks

ran out of memory. To analyze this, for the small graphs,

we measured the memory consumed as the maximum across

the 6 GPUs for each framework and we report it for cc in

Table III. D-IrGL consumes less memory than the others

and handles larger graphs on the same number of GPUs.

B. Multi-Host Multi-GPU Graph Analytics: Optimizations

In this subsection, we evaluate the IEC policy for both

D-IrGL and Lux. We were not able to run Lux benchmarks

for any of the large graphs due to memory problems3, even

on 64 GPUs. As noted earlier, the IEC partitions are the

same for D-IrGL and Lux (when there were no crashes).

As explained in Section IV-C, we evaluate four different

variants of D-IrGL: (1) Var1 (baseline): TWC + AS + Sync,

(2) Var2: ALB + AS + Sync, (3) Var3: ALB + UO + Sync,

and (4) Var4 (default): ALB + UO + Async.

3When Lux is launched, programmers specify the estimated amount of
GPU memory and zero-copy (pinned) memory needed to run it. Even with
the maximum possible GPU memory and recommended zero-copy memory,
it did not run.

49
.2

G
B

49
.2

G
B

3.
4G

B

3.
5G

B

44
.5

G
B

44
.5

G
B

4.
1G

B

4.
1G

B

18
0.

3G
B

18
0.

3G
B

4.
3G

B

4.
6G

B

18
9.

7G
B

18
9.

7G
B

18
1.

6G
B

24
3.

1G
B

58
.6

G
B

58
.6

G
B

12
.7

G
B

14
.6

G
B

23
.1

G
B

23
.1

G
B

1.
8G

B

1.
8G

B

21
.4

G
B

21
.4

G
B

4G
B

4G
B

54
.8

G
B

54
.8

G
B

1.
7G

B

1.
7G

B

22
9.

4G
B

22
9.

4G
B

12
2.

5G
B

16
6.

8G
B

29
.7

G
B

29
.7

G
B

5.
8G

B

6.
2G

B

11
.1

G
B

11
G

B

0.
2G

B

0.
2G

B

9G
B

9.
2G

B

0.
4G

B

0.
4G

B

5.
1G

B

5.
1G

B

0.
1G

B

0.
1G

B

15
G

B

15
G

B

4.
9G

B

5.
3G

B

16
.7

G
B

16
.6

G
B

1.
1G

B

1.
1G

B

friendster twitter50 uk07
bfs

cc
kcore

pagerank
sssp

V
ar

1

V
ar

2

V
ar

3

V
ar

4

V
ar

1

V
ar

2

V
ar

3

V
ar

4

V
ar

1

V
ar

2

V
ar

3

V
ar

4

0.0
0.5
1.0
1.5
2.0
2.5

0.0

0.5

1.0

1.5

2.0

0

2

4

6

8

0

5

10

15

0

1

2

3

T
im

e
(s

ec
)

Min Wait Device Comm. Max Compute

Figure 4: Breakdown of execution time of different variants

of D-IrGL for medium graphs on 32 P100 GPUs of Bridges.

Figure 3 shows the strong scaling behavior of D-IrGL

variants and Lux programs on medium graphs using up to

64 GPUs. The missing points for both D-IrGL and Lux

indicate that the benchmarks failed either due to memory

limits or crashes. Figures 4 and 5 show the breakdown in

execution time on 32 and 4 GPUs, respectively. We measure

the computation time on each device (GPU) and report the

maximum among them. We also measure the time spent on

each corresponding host (CPU) waiting (blocking) to receive

messages from another host and report the minimum among

them. We report the rest of the execution time (maximum

among devices) as the non-overlapping communication time

between the device and host. In addition, we report the

communication volume (in GB) on each bar. Figure 6 shows

the breakdown in execution time on 64 GPUs for large

graphs.

1) Lux vs. D-IrGL baseline (Var1): We analyze Lux by

comparing it with the baseline Var1. This turns off specific

optimizations in D-IrGL that are not present in Lux. As

observed in Figure 3, Lux does not scale beyond 4 GPUs and

Var1 always outperforms Lux. However, as seen in Figure 5,

both Var1 and Lux perform similarly in the computation

phase because both can balance load within the thread block

but not among the thread blocks. Var1, even with AS, spends

little time in synchronization among hosts (Min Wait Time).

For 8 or more hosts, most of Lux’s runtime is spent waiting.

90

friendster twitter50 uk07

cc
pagerank

D-IrGL
 (Var1)

Lux D-IrGL
 (Var1)

Lux D-IrGL
 (Var1)

Lux

0

5

10

15

20

0

25

50

75

100

T
im

e
(s

ec
)

Min Wait Device Comm. Max Compute

Figure 5: Breakdown of execution time of Lux and D-IrGL

for medium graphs on 4 P100 GPUs of Bridges.

2) Computation Optimizations — TWC vs. ALB: D-IrGL

supports ALB [17], which can dynamically balance the load

among the thread blocks within the GPU. The only differ-

ence between Var1 and Var2 is that Var2 uses ALB while

Var1 uses TWC. Figures 3, 4, and 6 show that Var2 performs

similar to Var1 in most cases. However, for particular cases

such as pagerank on uk-2007 as well as clueweb12 and

uk-2014, Var2 performs better. Figure 6 shows that Var2

spends less time in computation than Var1 for pagerank on

both clueweb12 and uk-2014. This is because pagerank uses

pull-style algorithm that reads the incoming neighbors of a

vertex to update its label, and the maximum in-degree for

these inputs is huge (shown in Table I). Var1 uses TWC

to distribute the edges of high in-degree vertices within the

threads of a thread block, leading to a huge load imbalance

among the thread blocks. Var2 uses ALB which dynamically

detects the presence of thread block load imbalance and dis-

tributes the load evenly among all thread blocks within the

GPU. All the other benchmarks use push-style algorithms

that read the vertex’s label and updates outgoing neighbors,

and the same inputs have much lower maximum out-degree

compared to maximum in-degree (Table I). As a result, the

benchmarks do not suffer from thread block load imbalance.

Consequently, the computation times (and execution times)

of Var1 and Var2 are similar for the other benchmarks.

3) Communication Optimizations — AS vs. UO: D-IrGL

supports tracking updates and sending only the updated

values (UO). Var3 uses UO while Var2 sends all the shared

values (AS). Figures 3, 4, and 6 show that Var3 outperforms

Var2 for almost all cases (except uk-2007 on 64 GPUs). Var3

is faster than Var2 because not all vertices are updated in ev-

ery bulk-synchronous (BSP) round, and synchronizing labels

of all vertices (AS) leads to unnecessary communication.

We observe that Var3 reduces host-device communication

volume and time significantly in almost all cases. For uk07

29
04

.3
G

B

29
02

.3
G

B

10
.9

G
B

11
.8

G
B

81
4.

8G

81
4.

8G
B

21
.8

G
B

23
.2

G
B

42
32

.2
G

B

42
32

.2
G

B

2.
6G

B

2.
7G

B

94
2.

7G
B

94
2.

7G
B

23
6.

1G
B

39
8.

7G
B

29
99

.9
G

B

29
94

.1
G

B

59
.6

G
B

70
.2

G
B

12
41

.1
G

B

12
41

.1
G

B

2.
4G

B

2.
7G

B

14
42

.2
G

B

7.
1G

B

8.
2G

B

63
8.

9G
B

63
8.

9G
B

1G
B

1G
B

19
8.

6G
B

19
8.

6G
B

52
.5

G
B

67
.8

G
B

12
41

.1
G

B

12
41

.1
G

B

15
.7

G
B

17
G

B

clueweb12 uk14
bfs

cc
kcore

pagerank
sssp

V
ar

1

V
ar

2

V
ar

3

V
ar

4

V
ar

1

V
ar

2

V
ar

3

V
ar

4

0

100

200

0

50

100

0
50

100
150
200
250

0

100

200

300

400

0

100

200

300

400

T
im

e
(s

ec
)

Min Wait Device Comm. Max Compute

Figure 6: Breakdown of execution time of different variants

of D-IrGL for large graphs on 64 P100 GPUs of Bridges.

with sssp on 64 GPUs (which executes 155 BSP rounds),

we observe that the average message size was reduced from

∼2MB to ∼0.2MB when switching from Var2 to Var3.

Although this is a reduction, communication of these small

messages is bound by the latency, so the communication

time is similar. However, UO has the overhead of extracting

the updated values from the GPU (using a prefix-scan). Var3

is slower than Var2 due to this overhead for this case. To

contrast this effect, consider friendster for sssp on 64 GPUs

(executes 26 BSP rounds), the average message size was

reduced from ∼60MB to ∼10MB when switching from Var2

to Var3. As these are larger messages, this reduction leads to

a reduction in communication time that offsets the overhead

of prefix-scan.

Sending only the updated values is key to reducing the

communication volume and time, but there is a threshold

below which the overhead of extracting the updated values

outweighs the benefits of volume reduction. This threshold

can be determined using microbenchmarking, and existing

multi-GPU frameworks can benefit from doing this.

4) Execution Model — Sync vs. Async: D-IrGL supports

bulk-asynchronous execution (Async). Var4 uses Async (the

rest use Sync). Figures 3, 4, and 6 show that Var4 outper-

forms Var3 in most cases. Async minimizes idle time as

it does not wait for messages from other hosts to perform

the next round of computation. This may result in faster

convergence as faster hosts can communicate the updated

91

friendster twitter50 uk07

bfs
cc

kcore
pagerank

sssp

2 4 8 16 32 64 2 4 8 16 32 64 2 4 8 16 32 64

0.125

0.250

0.500

1.000

0.5

4.0

32.0

256.0

0.25

1.00

4.00

8

32

128

512

0.25

0.50

1.00

2.00

Number of GPUs

E
xe

cu
tio

n
tim

e
(s

ec
)

Lux
D-IrGL

HVC
OEC
IEC
CVC

Figure 7: Strong scaling (log-log scale) of D-IrGL with

different partitioning policies and Lux for medium graphs

on Bridges (2 GPUs share a physical machine).

values for straggler hosts to compute with less stale val-

ues. However, Async may suffer from an increase in the

redundant work performed. To illustrate, we examine bfs

with uk14 on 64 GPUs. Async is slower due to increase in

the minimum number of local rounds executed (from 1000

to 2141), leading to an increase in the average work items

(from 6.7 ∗ 1010 to 7.7 ∗ 1010), communication volume, and

host-device communication time. In contrast, for bfs with

clueweb12 on 64 GPUs, the increase in redundant work is

offset by a decrease in the minimum number of rounds

executed by the straggler host, which improves overall

execution time.

BASP-style execution is beneficial in most cases as it can

reduce the idle time. However, it can lead more redundant

computation/communication, so it would be useful to dy-

namically throttle the degree of asynchronous execution.

C. Multi-Host Multi-GPU Graph Analytics: Partitioning

In this subsection, we use all the optimizations — ALB

+ UO + Async (Var4), and analyze different partitioning

policies.

Figure 7 shows the strong scaling of benchmarks with

various partitioning policies for medium graphs. CVC scales

best for all benchmarks and inputs. Figures 8 and 9 show the

breakdown of execution time for medium and large graphs,

respectively. The clear takeaway is that communication time

is the bottleneck is most cases. The communication time of

3.
7G

B

4.
6G

B

3.
5G

B

2.
5G

B

7.
7G

B

4.
1G

B

4.
1G

B

2.
9G

B

46
.3

G
B

4.
5G

B

4.
6G

B

7.
1G

B

14
94

.8
G

B

23
1.

8G
B

24
3.

1G
B

18
5.

6G
B

17
.1

G
B 16

G
B

14
.6

G
B

10
.5

G
B

0.
9G

B

2.
2G

B

1.
8G

B

1.
5G

B

4.
6G

B

4G
B

4G
B

2.
8G

B

7.
5G

B

1.
7G

B

1.
7G

B

2.
9G

B

45
0.

8G
B

17
5.

6G
B

16
6.

8G
B

13
4.

8G
B

3.
3G

B

6.
9G

B

6.
2G

B

5.
6G

B

0.
1G

B

0G
B

0.
2G

B

0.
2G

B

0.
2G

B 0.
4G

B

0.
4G

B

0.
7G

B

0.
2G

B

0.
1G

B

0.
1G

B

0.
3G

B

1.
5G

B

5.
3G

B

5.
6G

B

0.
4G

B

0.
3G

B

1.
1G

B

1.
1G

B

friendster twitter50 uk07

bfs
cc

kcore
pagerank

sssp

H
V

C

O
E

C

IE
C

C
V

C

H
V

C

O
E

C

IE
C

C
V

C

H
V

C

O
E

C

IE
C

C
V

C

0.0

0.2

0.4

0.6

0.0

0.2

0.4

0.6

0

2

4

6

0

25

50

75

100

0.0

0.5

1.0

T
im

e
(s

ec
)

Min Wait Device Comm. Max Compute

Figure 8: Breakdown of execution time of D-IrGL with

different partitioning policies for medium graphs on 32 P100

GPUs of Bridges.

CVC is generally lower than all other partitioning policies

even though it sends more data. Compute time may also

be higher in some configurations, but in many cases the

higher compute time is offset by the significantly lower

communication time.

CVC has fewer communication partners due to the use

of its structural invariants, thereby allowing it to send more

data faster. This is similar to what has been previously

observed for CPUs as well [7], except that CVC also helps

reduce the host-device communication for GPUs. The key

difference between the results on CPUs which used Sync and

our results is that CVC starts outperforming other policies
at a much smaller scale — 16 or more GPUs. This may

be due to two reasons: (1) Async may balance the load

better than Sync, or (2) the communication to computation

ratio may be higher when GPUs are used instead of CPUs.

This is important because none of the existing multi-GPU

frameworks support vertex-cuts while hardware manufactur-

ers are designing single-host multi-GPU systems with 16

GPUs (like NVIDIA DGX2).

Even with all the optimizations and the best partitioning

policies, the host-device communication time is a significant
portion of the execution time but not much more than the

computation time. The execution time can be further reduced

by overlapping this communication with computation using

asynchronous communication between host and device or by

communicating directly between devices using GPUDirect.

92

2.
7G

B

1.
5G

B

11
.8

G
B

10
.7

G
B

9.
4G

B

23
.3

G
B

23
.2

G
B

35
.5

G
B

8.
2G

B

2.
7G

B

2.
7G

B

20
.5

G
B

43
.8

G
B

39
8.

7G
B

8.
1G

B

70
.2

G
B

1.
1G

B

0.
7G

B

2.
7G

B

3G
B

4.
8G

B

7.
2G

B

8.
2G

B

14
.2

G
B

2.
5G

B

1G
B

1G
B

4.
7G

B

16
.2

G
B

67
.8

G
B

65
.9

G
B

6.
3G

B

4G
B

17
G

B

18
.9

G
B

0.
8G

B

7G
B

6.
5G

B
11

.9
G

B

23
G

B

15
1.

7G
B

5G
B

clueweb12 uk14 wdc14

bfs
cc

kcore
pagerank

sssp

H
V

C

O
E

C

IE
C

C
V

C

H
V

C

O
E

C

IE
C

C
V

C

H
V

C

O
E

C

C
V

C

0

10

20

30

0

10

20

0

3

6

9

0

10

20

30

0

10

20

30

40

T
im

e
(s

ec
)

Min Wait Device Comm. Max Compute

Figure 9: Breakdown of execution time of D-IrGL with

different partitioning policies for large graphs on 64 P100

GPUs of Bridges.

Table IV shows the load balance for all benchmarks and

policies with uk07 and uk14. Static load balance, dynamic

load balance, and memory load balance refer to the dis-

tribution of edges, computation time, and GPU memory

allocated, respectively. The metric for all three is the

maximum of that measure divided by the mean of that

measure. First, static balance is not necessarily correlated
to dynamic balance due to the irregular nature of graph
analytics benchmarks. For instance on uk14, pagerank with

CVC is statically imbalanced but dynamically balanced,

while bfs with IEC is statically balanced but dynamically

imbalanced. Thus, even if a partitioning policy aims to

statically balance load across GPUs, there is no guarantee

that computation is balanced across GPUs. This is similar

to what has been observed for CPUs [7]. Second, and more

importantly, static and memory load balance are highly

correlated as the amount of memory allocated on a GPU is

proportional to the number of edges assigned to it. As GPUs

have limited memory, static load balancing is important as

high static load imbalance may cause applications to run
out of memory even for graphs with size less than the

combined memory available on all the GPUs. This is evident

for partitioning policies on large graphs (Figure 9).

Table IV: Static load balance (max./mean no. of edges),

dynamic load balance (max./mean compute time), and GPU

memory (max./mean) of D-IrGL.

BenchmarkPartition uk07 on 32 GPUs uk14 on 64 GPUs
Static Dynamic MemoryStatic Dynamic Memory

bfs

CVC 1.15 1.17 1.15 1.15 1.11 1.14
HVC 1.10 1.20 1.08 1.40 1.38 1.38
IEC 1.00 1.14 1.04 1.00 1.31 1.08
OEC 1.00 1.20 1.02 1.00 1.24 1.03

cc

CVC 1.03 1.18 1.05 1.12 1.10 1.13
HVC 1.09 1.30 1.08 1.11 1.34 1.11
IEC 1.00 1.27 1.02 1.00 1.24 1.04
OEC 1.00 1.29 1.02 1.00 1.22 1.04

kcore

CVC 1.03 1.14 1.05 1.12 1.12 1.13
HVC 1.09 1.22 1.08 1.11 1.35 1.11
IEC 1.00 1.20 1.02 1.00 1.31 1.04
OEC 1.00 1.19 1.02 1.00 1.29 1.04

pagerank
CVC 1.16 1.04 1.15 1.15 1.02 1.14
IEC 1.00 1.09 1.04 1.00 1.09 1.08
OEC 1.00 1.10 1.03 1.00 1.08 1.04

sssp

CVC 1.15 1.10 1.15 1.15 1.09 1.15
HVC 1.10 1.21 1.09 1.40 1.34 1.39
IEC 1.00 1.14 1.02 1.00 1.24 1.04
OEC 1.00 1.14 1.01 1.00 1.22 1.02

VI. RELATED WORK

GPU Studies. Owens et al. [29] present a survey of general-

purpose computation on GPUs. Shi et al. [14] present a

survey of different issues in GPU-based graph processing,

such as data layout, memory access pattern, and workload

mapping. Gill et al. [7] present a detailed study of the

different partitioning policies for distributed CPUs. Pan et

al. [6] and Hoang et al. [30] analyze the performance of

breadth-first search and triangle counting, respectively, on

distributed GPUs. In this paper, we analyze five graph

analytical applications on distributed GPUs with different

partitioning policies as well computation and communication

optimizations.

GPU Graph Analytical Frameworks. Several frame-

works [31], [9], [27] focus on improving the performance of

graph analytical applications on a single GPU by exploiting

the architectural features. Totem [32] is a graph framework

built to support Bulk Synchronous Parallel (BSP) execution

on a CPU-GPU heterogeneous system. Gill et al. [33]

propose a compiler framework for processing graph ana-

lytical applications on distributed CPU-GPU heterogeneous

systems.

Medusa [34] provides a programming framework for writ-

ing graph analytical applications on single-host multi-GPU

platforms by using sequential C/C++ code. Similarly, Gun-

rock [1] and Groute [2] provide support for writing single-

host multi-GPU graph analytical applications using BSP and

asynchronous style of execution respectively. D-IrGL [4]

and Lux [3] support multi-host multi-GPU platforms. In

this study, we evaluate distributed GPU graph analytical

applications in D-IrGL [4] using real-world datasets of

different sizes.

93

VII. CONCLUSION

Our study on distributed multi-GPU graph analytical

system shows the need for vertex-cut policies such as

Cartesian vertex-cut for scaling on multi-GPU platforms.

It also shows the importance of static balance of graph

partitions to efficiently handle large graphs using the limited

GPU memories.

To improve performance on multi-host multi-GPU sys-

tems, frameworks should adopt modern GPU architecture ca-

pabilities such as GPUDirect to avoid data transfers through

the host. In addition, control mechanisms need to be devel-

oped to dynamically throttle bulk-asynchronous execution

to obtain the right trade-off between decoupled execution of

hosts and redundant computation/communication.

ACKNOWLEDGMENT

This research was supported by the NSF grants

1406355, 1618425, 1705092, 1725322, and by the DARPA

contracts FA8750-16-2-0004 and FA8650-15-C-7563. We

used XSEDE grant ACI-1548562 through allocation TG-

CIE170005. We used the Bridges cluster, supported by NSF

award number ACI-1445606.

REFERENCES

[1] Y. Pan, Y. Wang, Y. Wu, C. Yang, and J. D. Owens, “Multi-
GPU Graph Analytics,” in IPDPS, 2017.

[2] T. Ben-Nun, M. Sutton, S. Pai, and K. Pingali, “Groute: An
Asynchronous Multi-GPU Programming Model for Irregular
Computations,” in PPoPP, 2017.

[3] Z. Jia, Y. Kwon, G. Shipman, P. McCormick, M. Erez, and
A. Aiken, “A Distributed multi-GPU System for Fast Graph
Processing,” VLDB, 2017.

[4] R. Dathathri, G. Gill, L. Hoang, H.-V. Dang, A. Brooks,
N. Dryden, M. Snir, and K. Pingali, “Gluon: A
Communication-optimizing Substrate for Distributed
Heterogeneous Graph Analytics,” in PLDI, 2018.

[5] R. Dathathri, G. Gill, L. Hoang, H.-V. Dang, V. Jatala, V. K.
Nandivada, M. Snir, and K. Pingali, “Gluon-Async: A Bulk-
Asynchronous System for Distributed and Heterogeneous
Graph Analytics,” in PACT, 2019.

[6] Y. Pan, R. Pearce, and J. D. Owens, “Scalable Breadth-First
Search on a GPU Cluster,” in IPDPS, 2018.

[7] G. Gill, R. Dathathri, L. Hoang, and K. Pingali, “A Study
of Partitioning Policies for Graph Analytics on Large-scale
Distributed Platforms,” ser. PVLDB, 2018.

[8] L. Hoang, R. Dathathri, G. Gill, and K. Pingali, “CuSP:
A Customizable Streaming Edge Partitioner for Distributed
Graph Analytics,” in IPDPS, 2019.

[9] S. Pai and K. Pingali, “A Compiler for Throughput Optimiza-
tion of Graph Algorithms on GPUs,” in OOPSLA, 2016.

[10] R. Chen, J. Shi, Y. Chen, and H. Chen, “PowerLyra: Dif-
ferentiated Graph Computation and Partitioning on Skewed
Graphs,” in EuroSys, 2015.

[11] E. G. Boman, K. D. Devine, and S. Rajamanickam, “Scalable
matrix computations on large scale-free graphs using 2D
graph partitioning,” in SC 2013.

[12] K. Pingali, D. Nguyen, M. Kulkarni, M. Burtscher, M. A.
Hassaan, R. Kaleem, T.-H. Lee, A. Lenharth, R. Manevich,
M. Méndez-Lojo, D. Prountzos, and X. Sui, “The TAO of
parallelism in algorithms,” in PLDI, 2011.

[13] G. M. Slota, S. Rajamanickam, K. Devine, and K. Madduri,
“Partitioning Trillion-Edge Graphs in Minutes,” in IPDPS,
2017.

[14] X. Shi, Z. Zheng, Y. Zhou, H. Jin, L. He, B. Liu, and Q.-S.
Hua, “Graph Processing on GPUs: A Survey,” ACM Comput.
Surv., 2018.

[15] R. Nasre, M. Burtscher, and K. Pingali, “Data-driven ver-
sus Topology-driven Irregular Computations on GPUs,” in
IPDPS, 2013.

[16] D. Merrill, M. Garland, and A. Grimshaw, “Scalable GPU
Graph Traversal,” SIGPLAN Not., 2012.

[17] V. Jatala, L. Hoang, R. Dathathri, G. Gill, V. K. Nandivada,
and K. Pingali, “An Adaptive Load Balancer For Graph
Analytical Applications on GPUs.” [Online]. Available:
http://arxiv.org/abs/1911.09135

[18] J. Towns, T. Cockerill, M. Dahan, I. Foster, K. Gaither,
A. Grimshaw, V. Hazlewood, S. Lathrop, D. Lifka, G. D. Pe-
terson, R. Roskies, J. R. Scott, and N. Wilkins-Diehr, “Xsede:
Accelerating scientific discovery,” Computing in Science and
Engineering, 2014.

[19] D. Chakrabarti, Y. Zhan, and C. Faloutsos, R-MAT: A
Recursive Model for Graph Mining. [Online]. Available:
http://epubs.siam.org/doi/abs/10.1137/1.9781611972740.43

[20] J. Leskovec and A. Krevl, “SNAP Datasets: Stanford large
network dataset collection,” http://snap.stanford.edu/data, Jun.
2014.

[21] P. Boldi, M. Rosa, M. Santini, and S. Vigna, “Layered Label
Propagation: A Multiresolution Coordinate-free Ordering for
Compressing Social Networks,” in WWW, 2011.

[22] P. Boldi, A. Marino, M. Santini, and S. Vigna, “Bubing:
Massive crawling for the masses,” in WWW, 2014.

[23] P. Boldi and S. Vigna, “The WebGraph framework i: Com-
pression techniques,” in WWW, 2004.

[24] R. Meusel, S. Vigna, O. Lehmberg, and C. Bizer, “Web data
commons - hyperlink graphs,” 2012. [Online]. Available:
http://webdatacommons.org/hyperlinkgraph/

[25] M. Bauer, S. Treichler, E. Slaughter, and A. Aiken, “Legion:
Expressing Locality and Independence with Logical Regions,”
in SC 2012.

[26] D. Bonachea, “GASNet Specification, V1.1,” Tech. Rep.,
2002.

[27] Y. Wang, A. Davidson, Y. Pan, Y. Wu, A. Riffel, and J. D.
Owens, “Gunrock: A High-performance Graph Processing
Library on the GPU,” in PPoPP, 2015.

[28] G. Karypis and V. Kumar, “A Fast and High Quality Multi-
level Scheme for Partitioning Irregular Graphs,” SIAM J. Sci.
Comput., 1998.

[29] J. Owens, D. Luebke, N. Govindaraju, M. Harris, J. Kruger,
A. Lefohn, and T. Purcell, “A Survey of GeneralPurpose
Computation on Graphics Hardware,” Computer Graphics
Forum, 2007.

[30] L. Hoang, V. Jatala, X. Chen, U. Agarwal, R. Dathathri,
G. Gill, and K. Pingali, “DistTC: High Performance Dis-
tributed Triangle Counting,” in HPEC Graph Challenge ’19.

[31] K. Meng, J. Li, G. Tan, and N. Sun, “A Pattern Based
Algorithmic Autotuner for Graph Processing on GPUs,” in
PPoPP, 2019.

[32] A. Gharaibeh, L. Beltrão Costa, E. Santos-Neto, and M. Ri-
peanu, “A Yoke of Oxen and a Thousand Chickens for Heavy
Lifting Graph Processing,” in PACT, 2012.

[33] G. Gill, R. Dathathri, L. Hoang, A. Lenharth, and K. Pingali,
“Abelian: A Compiler for Graph Analytics on Distributed,
Heterogeneous Platforms,” in Euro-Par, 2018.

[34] J. Zhong and B. He, “Medusa: Simplified Graph Processing
on GPUs,” IEEE Trans. Parallel Distrib. Syst., 2014.

94

